kosmos-2-patch14-224 / modeling_kosmos2.py
ShrirajSK's picture
Upload 21 files
b8c0360
# coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch KOSMOS-2 model."""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPooling,
CausalLMOutputWithCrossAttentions,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_kosmos2 import Kosmos2Config, Kosmos2TextConfig, Kosmos2VisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/kosmos-2-patch14-224"
_CONFIG_FOR_DOC = Kosmos2Config
_EXPECTED_OUTPUT_SHAPE = None
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
KOSMOS2_START_DOCSTRING = r"""Kosmos-2"""
KOSMOS2_VISION_INPUTS_DOCSTRING = r"""Kosmos-2"""
KOSMOS2_TEXT_INPUTS_DOCSTRING = r"""Kosmos-2"""
KOSMOS2_INPUTS_DOCSTRING = r"""Kosmos-2"""
@dataclass
class Kosmos2ModelOutput(ModelOutput):
"""
Base class for text model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*, returned when being computed by the model):
Sequence of hidden-states at the output of `Kosmos2ImageToTextConnector`.
image_connector_attention (`tuple(torch.FloatTensor)`, *optional, returned when being computed by the model):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights given by `Kosmos2ImageToTextConnector`, after the attention softmax, used to compute the weighted average in the self-attention
heads.
vision_model_output(`BaseModelOutputWithPooling`, *optional*, returned when being computed by the model):
The output of the [`Kosmos2VisionModel`].
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
"""
last_hidden_states: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_features: Optional[torch.FloatTensor] = None
image_connector_attention: Optional[Tuple[torch.FloatTensor]] = None
vision_model_output: BaseModelOutputWithPooling = None
@dataclass
class Kosmos2ForConditionalGenerationModelOutput(ModelOutput):
"""
Model output class for `Kosmos2ForConditionalGeneration`.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*, returned when being computed by the model):
Sequence of hidden-states at the output of `Kosmos2ImageToTextConnector`.
image_connector_attention (`tuple(torch.FloatTensor)`, *optional, returned when being computed by the model):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights given by `Kosmos2ImageToTextConnector`, after the attention softmax, used to compute the weighted average in the self-attention
heads.
vision_model_output(`BaseModelOutputWithPooling`, *optional*, returned when being computed by the model):
The output of the [`Kosmos2VisionModel`].
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_features: Optional[torch.FloatTensor] = None
image_connector_attention: Optional[Tuple[torch.FloatTensor]] = None
vision_model_output: BaseModelOutputWithPooling = None
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Kosmos2
class Kosmos2VisionEmbeddings(nn.Module):
def __init__(self, config: Kosmos2VisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Kosmos2Vision
class Kosmos2VisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Kosmos2Vision
class Kosmos2VisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Kosmos2Vision
class Kosmos2VisionEncoderLayer(nn.Module):
def __init__(self, config: Kosmos2VisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = Kosmos2VisionAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Kosmos2VisionMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Kosmos2Vision
class Kosmos2VisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`Kosmos2VisionEncoderLayer`].
Args:
config: Kosmos2VisionConfig
"""
def __init__(self, config: Kosmos2VisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([Kosmos2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
causal_attention_mask,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer with CLIPVision->Kosmos2Vision,CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2Vision
class Kosmos2VisionTransformer(nn.Module):
def __init__(self, config: Kosmos2VisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = Kosmos2VisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = Kosmos2VisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(KOSMOS2_VISION_INPUTS_DOCSTRING)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding with M2M100->Kosmos2
class Kosmos2TextSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.register_buffer("weights", emb_weights, persistent=False)
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(
self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
):
if input_ids is not None:
bsz, seq_len = input_ids.size()
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
input_ids.device
)
else:
bsz, seq_len = inputs_embeds.size()[:-1]
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
# Similar to transformers.models.bart.modeling_bart.BartAttention with an additional `inner_attn_ln`.
class KosmosTextAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
add_inner_attn_layernorm: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.inner_attn_ln = None
if add_inner_attn_layernorm:
self.inner_attn_ln = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
if self.inner_attn_ln is not None:
attn_output = self.inner_attn_ln(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class Kosmos2TextFFN(nn.Module):
def __init__(self, config: Kosmos2TextConfig):
super().__init__()
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(config.embed_dim, config.ffn_dim)
self.fc2 = nn.Linear(config.ffn_dim, config.embed_dim)
self.ffn_layernorm = nn.LayerNorm(config.ffn_dim, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.ffn_layernorm(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
return hidden_states
class Kosmos2TextBlock(nn.Module):
def __init__(self, config: Kosmos2TextConfig):
super().__init__()
self.embed_dim = config.embed_dim
self.self_attn = KosmosTextAttention(
config,
embed_dim=self.embed_dim,
num_heads=config.attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
add_inner_attn_layernorm=True,
)
self.dropout = config.dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
if config.add_cross_attention:
self.encoder_attn = KosmosTextAttention(
config,
embed_dim=self.embed_dim,
num_heads=config.attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
add_inner_attn_layernorm=False,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.ffn = Kosmos2TextFFN(config)
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
hidden_states = self.self_attn_layer_norm(hidden_states)
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
if not hasattr(self, "encoder_attn"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
# FFN
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class Kosmos2TextTransformer(nn.Module):
"""
Transformer decoder consisting of `config.layers` layers. Each layer is a [`Kosmos2TextBlock`].
Args:
config: Kosmos2TextConfig
"""
def __init__(self, config: Kosmos2TextConfig):
super().__init__()
self.config = config
self.dropout = config.dropout
self.layerdrop = config.layerdrop
self.embed_scale = math.sqrt(config.embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.embed_dim, padding_idx=config.pad_token_id)
self.embed_positions = Kosmos2TextSinusoidalPositionalEmbedding(
num_positions=config.max_position_embeddings,
embedding_dim=config.embed_dim,
padding_idx=config.pad_token_id,
)
self.layers = nn.ModuleList([Kosmos2TextBlock(config) for _ in range(config.layers)])
self.layer_norm = nn.LayerNorm(config.embed_dim, config.layer_norm_eps)
self.gradient_checkpointing = False
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward_embedding(
self, input_ids, inputs_embeds=None, img_features=None, img_input_mask=None, past_key_values_length: int = 0
):
# The argument `inputs_embeds` should be the one without being multiplied by `self.embed_scale`.
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if img_features is not None:
inputs_embeds[img_input_mask.to(dtype=torch.bool)] = img_features
inputs_embeds = inputs_embeds * self.embed_scale
# embed positions
positions = self.embed_positions(
input_ids=input_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length
)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
return hidden_states
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
img_features: Optional[torch.Tensor] = None,
img_attn_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
# We don't need img info. when `past_key_values_length` > 0
if past_key_values_length > 0:
img_features = None
img_attn_mask = None
hidden_states = self.forward_embedding(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
img_features=img_features,
img_input_mask=img_attn_mask,
past_key_values_length=past_key_values_length,
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_shape, hidden_states, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, use_cache)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add final layer norm
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class Kosmos2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Kosmos2Config
supports_gradient_checkpointing = True
@add_start_docstrings(
"""The vision model from KOSMOS-2 without any head or projection on top.""",
KOSMOS2_START_DOCSTRING,
)
class Kosmos2VisionModel(Kosmos2PreTrainedModel):
config_class = Kosmos2VisionConfig
main_input_name = "pixel_values"
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2
def __init__(self, config: Kosmos2VisionConfig):
super().__init__(config)
self.model = Kosmos2VisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.get_input_embeddings with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2
def get_input_embeddings(self) -> nn.Module:
return self.model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(KOSMOS2_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Kosmos2VisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
return self.model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(
"""The text model from KOSMOS-2 without any head or projection on top.""",
KOSMOS2_START_DOCSTRING,
)
class Kosmos2TextModel(Kosmos2PreTrainedModel):
config_class = Kosmos2TextConfig
_no_split_modules = ["Kosmos2TextBlock"]
def __init__(self, config: Kosmos2TextConfig):
super().__init__(config)
self.model = Kosmos2TextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(KOSMOS2_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=Kosmos2TextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
img_features: Optional[torch.Tensor] = None,
img_attn_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Returns:
"""
return self.model(
input_ids=input_ids,
attention_mask=attention_mask,
img_features=img_features,
img_attn_mask=img_attn_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(
"""
The text model from KOSMOS-2 with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
KOSMOS2_START_DOCSTRING,
)
class Kosmos2TextForCausalLM(Kosmos2PreTrainedModel):
config_class = Kosmos2TextConfig
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: Kosmos2TextConfig):
super().__init__(config)
self.model = Kosmos2TextTransformer(config)
self.lm_head = nn.Linear(in_features=config.embed_dim, out_features=config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self) -> nn.Module:
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(KOSMOS2_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=Kosmos2TextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
img_features: Optional[torch.Tensor] = None,
img_attn_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
img_features=img_features,
img_attn_mask=img_attn_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
img_features,
img_attn_mask,
past_key_values=None,
attention_mask=None,
use_cache=None,
**model_kwargs,
):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut input_ids if past_key_values is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
# the image info. is already encoded into the past keys/values
img_features = None
img_attn_mask = None
elif img_attn_mask is not None:
# appending `False` to `img_attn_mask` (because `input_ids` grows during generation)
batch_size, seq_len = input_ids.size()
mask_len = img_attn_mask.size()[-1]
img_attn_mask = torch.cat(
(img_attn_mask, torch.zeros(size=(batch_size, seq_len - mask_len), dtype=torch.bool)), dim=1
)
return {
"input_ids": input_ids,
"img_features": img_features,
"img_attn_mask": img_attn_mask,
"past_key_values": past_key_values,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
class Kosmos2ImageToTextConnector(nn.Module):
"""The layer that transforms the image model's output to part of the text model's input (namely, image features)"""
def __init__(self, config: Kosmos2Config):
super().__init__()
self.dense = nn.Linear(config.vision_config.hidden_size, config.text_config.embed_dim)
self.latent_query = nn.Parameter(torch.randn(config.latent_query_num, config.text_config.embed_dim))
self.x_attn = KosmosTextAttention(
config.text_config,
config.text_config.embed_dim,
config.text_config.attention_heads,
dropout=config.text_config.attention_dropout,
is_decoder=False,
add_inner_attn_layernorm=False,
)
def forward(self, features):
hidden_states = self.dense(features)
# shape = [batch, latent_query_num, h_dim]
latent_query = self.latent_query.unsqueeze(0).expand(hidden_states.size(0), -1, -1)
key_value_states = torch.cat([hidden_states, latent_query], dim=1)
hidden_states, attn_weights, _ = self.x_attn(
hidden_states=latent_query,
key_value_states=key_value_states,
past_key_value=None,
attention_mask=None,
output_attentions=None,
)
return hidden_states, attn_weights
@add_start_docstrings(
"""
KOSMOS-2 Model for generating text and image features. The model consists of a vision encoder (CLIP) and a language
model.
""",
KOSMOS2_START_DOCSTRING,
)
class Kosmos2Model(Kosmos2PreTrainedModel):
config_class = Kosmos2Config
def __init__(self, config: Kosmos2Config):
super().__init__(config)
self.text_model = Kosmos2TextModel(config.text_config)
self.vision_model = Kosmos2VisionModel(config.vision_config)
self.image_to_text_connector = Kosmos2ImageToTextConnector(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.model.embed_tokens
def set_input_embeddings(self, value):
self.text_model.model.embed_tokens = value
@add_start_docstrings_to_model_forward(KOSMOS2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Kosmos2ModelOutput, config_class=Kosmos2Config)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
img_attn_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
img_features: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Kosmos2ModelOutput]:
# TODO: Add this
r"""
Returns:
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_model_output = None
image_connector_attention = None
if img_features is None:
if pixel_values is None:
raise ValueError("You have to specify either `pixel_values` or `img_features`.")
vision_model_output = self.vision_model(pixel_values)
# HF's CLIP has `last_hidden_state` without going through `post_layernorm`.
# Here we need the whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
img_features = self.vision_model.model.post_layernorm(vision_model_output.last_hidden_state)
# normalized features
img_features = nn.functional.normalize(img_features, dim=-1)
img_features, image_connector_attention = self.image_to_text_connector(img_features)
outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
img_features=img_features,
img_attn_mask=img_attn_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
outputs = outputs + (img_features, image_connector_attention, vision_model_output)
return tuple(output for output in outputs if output is not None)
return Kosmos2ModelOutput(
last_hidden_states=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_features=img_features,
image_connector_attention=image_connector_attention,
vision_model_output=vision_model_output,
)
@add_start_docstrings(
"""
KOSMOS-2 Model for generating text and bounding boxes given an image. The model consists of a vision encoder (CLIP)
and a language model.
""",
KOSMOS2_START_DOCSTRING,
)
class Kosmos2ForConditionalGeneration(Kosmos2PreTrainedModel):
config_class = Kosmos2Config
_tied_weights_keys = ["text_model.lm_head.weight"]
def __init__(self, config: Kosmos2Config):
super().__init__(config)
self.text_model = Kosmos2TextForCausalLM(config.text_config)
self.vision_model = Kosmos2VisionModel(config.vision_config)
self.image_to_text_connector = Kosmos2ImageToTextConnector(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.model.embed_tokens
def set_input_embeddings(self, value):
self.text_model.model.embed_tokens = value
def get_output_embeddings(self) -> nn.Module:
return self.text_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.text_model.set_output_embeddings(new_embeddings)
@add_start_docstrings_to_model_forward(KOSMOS2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Kosmos2ForConditionalGenerationModelOutput, config_class=Kosmos2Config)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
img_attn_mask=None,
input_ids: Optional[torch.Tensor] = None,
attention_mask=None,
head_mask: Optional[torch.Tensor] = None,
img_features: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Kosmos2ForConditionalGenerationModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> from transformers import AutoProcessor, Kosmos2ForConditionalGeneration
>>> model = Kosmos2ForConditionalGeneration.from_pretrained("ydshieh/kosmos-2-patch14-224")
>>> processor = AutoProcessor.from_pretrained("ydshieh/kosmos-2-patch14-224")
>>> prompt = "<grounding> An image of"
>>> image = Image.open("snowman.jpg")
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
>>> generated_ids = model.generate(
... pixel_values=inputs["pixel_values"],
... input_ids=inputs["input_ids"][:, :-1],
... attention_mask=inputs["attention_mask"][:, :-1],
... img_features=None,
... img_attn_mask=inputs["img_attn_mask"][:, :-1],
... use_cache=True,
... max_new_tokens=64,
... )
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> result = processor.post_processor_generation(generated_text)
>>> result
<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_model_output = None
image_connector_attention = None
if img_features is None:
if pixel_values is None:
raise ValueError("You have to specify either `pixel_values` or `img_features`.")
vision_model_output = self.vision_model(pixel_values)
# HF's CLIP has `last_hidden_state` without going through `post_layernorm`.
# Here we need the whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
img_features = self.vision_model.model.post_layernorm(vision_model_output.last_hidden_state)
# normalized features
img_features = nn.functional.normalize(img_features, dim=-1)
img_features, image_connector_attention = self.image_to_text_connector(img_features)
lm_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
img_features=img_features,
img_attn_mask=img_attn_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
outputs = lm_outputs + (img_features, image_connector_attention, vision_model_output)
return tuple(output for output in outputs if output is not None)
return Kosmos2ForConditionalGenerationModelOutput(
loss=lm_outputs.loss,
logits=lm_outputs.logits,
past_key_values=lm_outputs.past_key_values,
hidden_states=lm_outputs.hidden_states,
attentions=lm_outputs.attentions,
image_features=img_features,
image_connector_attention=image_connector_attention,
vision_model_output=vision_model_output,
)
def generate(
self,
input_ids=None,
attention_mask=None,
img_features=None,
inputs_embeds=None,
pixel_values=None,
**kwargs,
):
# in order to allow `inputs` argument (as in `GenerationMixin`)
inputs = kwargs.pop("inputs", None)
if pixel_values is not None and inputs is not None:
raise ValueError(
f"`inputs`: {inputs} were passed alongside `pixel_values` which is not allowed."
f"Make sure to either pass `inputs` or pixel_values=..."
)
if pixel_values is None and inputs is not None:
pixel_values = inputs
if img_features is None:
vision_model_output = self.vision_model(pixel_values)
# HF's CLIP has `last_hidden_state` without going through `post_layernorm`.
# Here we need the whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
img_features = self.vision_model.model.post_layernorm(vision_model_output.last_hidden_state)
# normalized features
img_features = nn.functional.normalize(img_features, dim=-1)
img_features, image_connector_attention = self.image_to_text_connector(img_features)
output = self.text_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
img_features=img_features,
input_embeds=inputs_embeds,
**kwargs,
)
return output