distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9058
- Accuracy: {'accuracy': 0.897}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.3397 | {'accuracy': 0.885} |
0.4181 | 2.0 | 500 | 0.4409 | {'accuracy': 0.889} |
0.4181 | 3.0 | 750 | 0.5619 | {'accuracy': 0.886} |
0.1889 | 4.0 | 1000 | 0.4954 | {'accuracy': 0.902} |
0.1889 | 5.0 | 1250 | 0.6734 | {'accuracy': 0.89} |
0.0662 | 6.0 | 1500 | 0.7783 | {'accuracy': 0.891} |
0.0662 | 7.0 | 1750 | 0.8374 | {'accuracy': 0.895} |
0.0098 | 8.0 | 2000 | 0.8961 | {'accuracy': 0.898} |
0.0098 | 9.0 | 2250 | 0.9009 | {'accuracy': 0.896} |
0.0089 | 10.0 | 2500 | 0.9058 | {'accuracy': 0.897} |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
Model tree for SofiaBianchi/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased