Edit model card

checkpoints

This model is a fine-tuned version of kavg/LiLT-RE-IT on the xfun dataset. It achieves the following results on the evaluation set:

  • Precision: 0.4898
  • Recall: 0.6641
  • F1: 0.5638
  • Loss: 0.6049

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 10000

Training results

Training Loss Epoch Step F1 Validation Loss Precision Recall
0.061 41.67 500 0.4764 0.2580 0.4142 0.5606
0.0332 83.33 1000 0.4906 0.3439 0.4181 0.5934
0.0264 125.0 1500 0.5194 0.3892 0.4436 0.6263
0.0104 166.67 2000 0.5250 0.4165 0.4468 0.6364
0.0064 208.33 2500 0.5245 0.4479 0.4460 0.6364
0.0013 250.0 3000 0.5204 0.4655 0.4532 0.6111
0.0019 291.67 3500 0.5342 0.4859 0.4630 0.6313
0.0009 333.33 4000 0.5420 0.5162 0.4640 0.6515
0.0006 375.0 4500 0.5515 0.5724 0.4795 0.6490
0.0039 416.67 5000 0.5470 0.5687 0.4662 0.6616
0.0012 458.33 5500 0.5595 0.5582 0.4860 0.6591
0.0001 500.0 6000 0.5730 0.5709 0.4981 0.6742
0.0022 541.67 6500 0.5578 0.5795 0.4877 0.6515
0.0012 583.33 7000 0.5674 0.5710 0.4953 0.6641
0.0009 625.0 7500 0.5607 0.5994 0.4879 0.6591
0.0002 666.67 8000 0.5616 0.5865 0.4879 0.6616
0.0016 708.33 8500 0.4972 0.6717 0.5714 0.5878
0.0 750.0 9000 0.4898 0.6641 0.5638 0.6049
0.0002 791.67 9500 0.4826 0.6641 0.5590 0.6223
0.0014 833.33 10000 0.4890 0.6742 0.5669 0.6318

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
4
Safetensors
Model size
287M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for SriDoc/LiLT-RE

Base model

kavg/LiLT-RE-IT
Finetuned
(1)
this model