|
--- |
|
license: mit |
|
base_model: kavg/LiLT-SER-FR |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- xfun |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: LiLT-SER-FR-SIN |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: xfun |
|
type: xfun |
|
config: xfun.sin |
|
split: validation |
|
args: xfun.sin |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7617924528301887 |
|
- name: Recall |
|
type: recall |
|
value: 0.7955665024630542 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7783132530120481 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8647776686772338 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# LiLT-SER-FR-SIN |
|
|
|
This model is a fine-tuned version of [kavg/LiLT-SER-FR](https://huggingface.co/kavg/LiLT-SER-FR) on the xfun dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2426 |
|
- Precision: 0.7618 |
|
- Recall: 0.7956 |
|
- F1: 0.7783 |
|
- Accuracy: 0.8648 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 10000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0057 | 21.74 | 500 | 0.8019 | 0.6884 | 0.7020 | 0.6951 | 0.8582 | |
|
| 0.008 | 43.48 | 1000 | 1.0139 | 0.6963 | 0.7623 | 0.7278 | 0.8648 | |
|
| 0.0006 | 65.22 | 1500 | 0.9878 | 0.7090 | 0.7562 | 0.7318 | 0.8592 | |
|
| 0.0038 | 86.96 | 2000 | 1.2269 | 0.7104 | 0.7401 | 0.7250 | 0.8373 | |
|
| 0.001 | 108.7 | 2500 | 0.9751 | 0.7276 | 0.7697 | 0.7481 | 0.8707 | |
|
| 0.0004 | 130.43 | 3000 | 1.0918 | 0.7479 | 0.7672 | 0.7574 | 0.8538 | |
|
| 0.0003 | 152.17 | 3500 | 1.0782 | 0.7102 | 0.7635 | 0.7359 | 0.8604 | |
|
| 0.0 | 173.91 | 4000 | 1.0515 | 0.7402 | 0.7894 | 0.7640 | 0.8704 | |
|
| 0.0001 | 195.65 | 4500 | 1.2154 | 0.7373 | 0.7709 | 0.7538 | 0.8419 | |
|
| 0.0 | 217.39 | 5000 | 1.1026 | 0.7411 | 0.7722 | 0.7563 | 0.8642 | |
|
| 0.0001 | 239.13 | 5500 | 1.0594 | 0.7262 | 0.7512 | 0.7385 | 0.8576 | |
|
| 0.0 | 260.87 | 6000 | 1.1103 | 0.7377 | 0.7759 | 0.7563 | 0.8609 | |
|
| 0.0 | 282.61 | 6500 | 1.1591 | 0.7267 | 0.7599 | 0.7429 | 0.8610 | |
|
| 0.0 | 304.35 | 7000 | 1.2382 | 0.7574 | 0.7537 | 0.7556 | 0.8562 | |
|
| 0.0 | 326.09 | 7500 | 1.2027 | 0.7485 | 0.7882 | 0.7678 | 0.8578 | |
|
| 0.0001 | 347.83 | 8000 | 1.1492 | 0.7433 | 0.7808 | 0.7616 | 0.8659 | |
|
| 0.0002 | 369.57 | 8500 | 1.1924 | 0.7570 | 0.7980 | 0.7770 | 0.8655 | |
|
| 0.0 | 391.3 | 9000 | 1.2426 | 0.7618 | 0.7956 | 0.7783 | 0.8648 | |
|
| 0.0 | 413.04 | 9500 | 1.3078 | 0.7620 | 0.7808 | 0.7713 | 0.8597 | |
|
| 0.0 | 434.78 | 10000 | 1.3219 | 0.7639 | 0.7771 | 0.7705 | 0.8579 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.1 |
|
|