Edit model card

Celestria-MoE-8x10.7b

image/png

The Celestria Series, is the "Big Sister" of the Lumosia and Umbra Series. It is an experiment born from the collective wisdom of the AI community, a mosaic of the eight best-performing Solar models (By my prefrences)

its 3am.... again, I have a tendency to do this apparently so im not going to get to creative on this card.

With this model I have created positive and negative prompt sentances:

[Celestria Series] Based on prompt sentances.

[Umbra Series] based on prompt keywords.

[Lumosia Series] based on prompt topics.

Let me know what you think!

Template:

### System:

### USER:{prompt}

### Assistant:

Settings:

Temp: 1.0
min-p: 0.02-0.1

Evals:

To come

  • Avg:
  • ARC:
  • HellaSwag:
  • MMLU:
  • T-QA:
  • Winogrande:
  • GSM8K:

Examples:

Example 1:

User:

Celestria:
Example 2:

User:

Celestria:

🧩 Configuration

yaml
experts:
  - source_model: Fimbulvetr-10.7B-v1

  - source_model: PiVoT-10.7B-Mistral-v0.2-RP

  - source_model: UNA-POLAR-10.7B-InstructMath-v2

  - source_model: LMCocktail-10.7B-v1

  - source_model: CarbonBeagle-11B

  - source_model: SOLARC-M-10.7B

  - source_model: Nous-Hermes-2-SOLAR-10.7B-MISALIGNED

  - source_model: CarbonVillain-en-10.7B-v4

πŸ’» Usage

python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Steelskull/Celestria-MoE-8x10.7b"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.bfloat16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.