|
--- |
|
license: apache-2.0 |
|
tags: |
|
- mergekit |
|
- Etheria |
|
base_model: [] |
|
model-index: |
|
- name: Etheria-55b-v0.1 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 65.1 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 81.93 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 73.66 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 56.16 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 76.09 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 35.18 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1 |
|
name: Open LLM Leaderboard |
|
--- |
|
# Steelskull/Etheria-55b-v0.1 |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/RAhrbktyyVQxOR1np-9L2.png) |
|
|
|
## Merge Details |
|
|
|
An attempt to make a functional goliath style merge to create a [Etheria] 55b-200k with two yi-34b-200k models. |
|
|
|
due to the merge it 'theoretically' should have a context of 200k but I recommend starting at 32k and moveing up, |
|
as it is unknown (at this time) what the merge has done to the context length. |
|
|
|
This is a merge of both VerA and VerB of Etheria-55b (There numbers were surprisingly good), I then created a sacrificial 55B out of the most performant yi-34b-200k Model |
|
and performed a Dare_ties merge and equalize the model into its current state. |
|
|
|
### recommended settings and Prompt Format: |
|
|
|
Ive tested it up to 32k context using exl2 using these settings: |
|
|
|
``` |
|
"temp": 0.7, |
|
"temperature_last": true, |
|
"top_p": 1, |
|
"top_k": 0, |
|
"top_a": 0, |
|
"tfs": 1, |
|
"epsilon_cutoff": 0, |
|
"eta_cutoff": 0, |
|
"typical_p": 1, |
|
"min_p": 0.1, |
|
"rep_pen": 1.1, |
|
"rep_pen_range": 8192, |
|
"no_repeat_ngram_size": 0, |
|
"penalty_alpha": 0, |
|
"num_beams": 1, |
|
"length_penalty": 1, |
|
"min_length": 0, |
|
"encoder_rep_pen": 1, |
|
"freq_pen": 0, |
|
"presence_pen": 0, |
|
"do_sample": true, |
|
"early_stopping": false, |
|
"add_bos_token": false, |
|
"truncation_length": 2048, |
|
"ban_eos_token": true, |
|
"skip_special_tokens": true, |
|
"streaming": true, |
|
"mirostat_mode": 0, |
|
"mirostat_tau": 5, |
|
"mirostat_eta": 0.1, |
|
``` |
|
|
|
Prompt format that work well |
|
``` |
|
ChatML & Alpaca |
|
``` |
|
|
|
### Merge Method |
|
|
|
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using Merged-Etheria-55b as a base. |
|
|
|
### Configuration |
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
```yaml |
|
|
|
base_model: Merged-Etheria-55b |
|
models: |
|
- model: Sacr-Etheria-55b |
|
parameters: |
|
weight: [0.22, 0.113, 0.113, 0.113, 0.113, 0.113] |
|
density: 0.61 |
|
- model: Merged-Etheria-55b |
|
parameters: |
|
weight: [0.22, 0.113, 0.113, 0.113, 0.113, 0.113] |
|
density: 0.61 |
|
merge_method: dare_ties |
|
tokenizer_source: union |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
|
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Steelskull__Etheria-55b-v0.1) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |64.69| |
|
|AI2 Reasoning Challenge (25-Shot)|65.10| |
|
|HellaSwag (10-Shot) |81.93| |
|
|MMLU (5-Shot) |73.66| |
|
|TruthfulQA (0-shot) |56.16| |
|
|Winogrande (5-shot) |76.09| |
|
|GSM8k (5-shot) |35.18| |
|
|
|
|