whisper-medium-sr / README.md
StefanJevtic63's picture
End of training
ee98746 verified
metadata
library_name: transformers
language:
  - sr
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper - Serbian Model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: sr
          split: None
          args: sr
        metrics:
          - name: Wer
            type: wer
            value: 20.513265129183285

Whisper - Serbian Model

This model is a fine-tuned version of openai/whisper-medium on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4195
  • Wer: 20.5133

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0368 4.6083 1000 0.2510 21.8831
0.0045 9.2166 2000 0.3441 20.3572
0.0002 13.8249 3000 0.4126 20.6520
0.0001 18.4332 4000 0.4195 20.5133

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.1