Edit model card

Bengali Named Entity Recognition

Fine-tuning bert-base-multilingual-cased on Wikiann dataset for performing NER on Bengali language.

Label ID and its corresponding label name

Label ID Label Name
0 O
1 B-PER
2 I-PER
3 B-ORG
4 I-ORG
5 B-LOC
6 I-LOC

Results

Name Overall F1 LOC F1 ORG F1 PER F1
Train set 0.997927 0.998246 0.996613 0.998769
Validation set 0.970187 0.969212 0.956831 0.982079
Test set 0.9673011 0.967120 0.963614 0.970938

Example

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("Suchandra/bengali_language_NER")
model = AutoModelForTokenClassification.from_pretrained("Suchandra/bengali_language_NER")

nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "মারভিন দি মারসিয়ান"

ner_results = nlp(example)
ner_results
Downloads last month
6,861
Safetensors
Model size
177M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Suchandra/bengali_language_NER