File size: 3,752 Bytes
0defbe5 5d70e40 0defbe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# CogView3-Plus-3B
<p style="text-align: center;">
<div align="center">
<img src=https://github.com/THUDM/CogView3/raw/main/resources/logo.svg width="50%"/>
</div>
<p align="center">
<a href="README.md">📄 Read in English</a> |
<a href="https://huggingface.co/spaces/THUDM-HF-SPACE/CogView-3-Plus">🤗 Hugging Face Space | </a>
<a href="https://github.com/THUDM/CogView3">🌐 Github </a> |
<a href="https://arxiv.org/pdf/2403.05121">📜 arxiv </a>
</p>
<p align="center">
📍 前往<a href="https://chatglm.cn/main/gdetail/65a232c082ff90a2ad2f15e2?fr=osm_cogvideox&lang=zh"> 清言 </a> 和 <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9"> API平台</a> 体验更大规模的商业版视频生成模型。
</p>
## 推理要求和模型介绍
该模型是 CogView3 的 DiT 版本图像生成模型,支持从 512 到 2048 范围内的图像生成。
+ 分辨率: 长宽均需满足 512px - 2048px 之间,均需被32整除。
+ 推理速度: 1s / step (在 A100 进行测试)
+ 精度: BF16 / FP32 (不支持FP16,会出现溢出导致纯黑图片)
## 显存消耗
我们在A100设备上对几个常见分辨率的显存消耗进行了测试,`batchsize=1, BF16`, 如下表所示:
| 分辨率 | enable_model_cpu_offload OFF | enable_model_cpu_offload ON |
|-------------|------------------------------|-----------------------------|
| 512 * 512 | 19GB | 11GB |
| 720 * 480 | 20GB | 11GB |
| 1024 * 1024 | 23GB | 11GB |
| 1280 * 720 | 24GB | 11GB |
| 2048 * 2048 | 25GB | 11GB |
## 快速开始
首先,确保从源代码安装`diffusers`库。
```shell
pip install git+https://github.com/huggingface/diffusers.git
```
接着,运行以下代码:
```python
from diffusers import CogView3PlusPipeline
import torch
pipe = CogView3PlusPipeline.from_pretrained("THUDM/CogView3-Plus-3B", torch_dtype=torch.float16).to("cuda")
# Open it for reduce GPU memory usage
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
prompt = "A vibrant cherry red sports car sits proudly under the gleaming sun, its polished exterior smooth and flawless, casting a mirror-like reflection. The car features a low, aerodynamic body, angular headlights that gaze forward like predatory eyes, and a set of black, high-gloss racing rims that contrast starkly with the red. A subtle hint of chrome embellishes the grille and exhaust, while the tinted windows suggest a luxurious and private interior. The scene conveys a sense of speed and elegance, the car appearing as if it's about to burst into a sprint along a coastal road, with the ocean's azure waves crashing in the background."
image = pipe(
prompt=prompt,
guidance_scale=7.0,
num_images_per_prompt=1,
num_inference_steps=50,
width=1024,
height=1024,
).images[0]
image.save("cogview3.png")
```
更多内容以及下载 SAT 原始权重,请前往我们的 [github](https://github.com/THUDM/CogView3)。
## 引用
🌟 如果您发现我们的工作有所帮助,欢迎引用我们的文章,留下宝贵的stars
```
@article{zheng2024cogview3,
title={Cogview3: Finer and faster text-to-image generation via relay diffusion},
author={Zheng, Wendi and Teng, Jiayan and Yang, Zhuoyi and Wang, Weihan and Chen, Jidong and Gu, Xiaotao and Dong, Yuxiao and Ding, Ming and Tang, Jie},
journal={arXiv preprint arXiv:2403.05121},
year={2024}
}
```
## 模型协议
该模型基于 [Apache 2.0 License](LICENSE) 协议发布。
|