TTimur's picture
End of training
04d53bc verified
|
raw
history blame
2.39 kB
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-base-kyrgyzNER
    results: []

xlm-roberta-base-kyrgyzNER

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3229
  • Precision: 0.7042
  • Recall: 0.6871
  • F1: 0.6956
  • Accuracy: 0.9119

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 1
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 800
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 88 3.8135 0.0001 0.0009 0.0002 0.0002
No log 2.0 176 1.3867 0.0 0.0 0.0 0.7162
No log 3.0 264 0.9276 0.1684 0.0357 0.0590 0.7678
No log 4.0 352 0.6467 0.4470 0.2771 0.3421 0.8420
No log 5.0 440 0.5200 0.6394 0.5282 0.5785 0.8792
1.647 6.0 528 0.4383 0.6712 0.5918 0.6290 0.8927
1.647 7.0 616 0.3847 0.6724 0.6439 0.6578 0.9028
1.647 8.0 704 0.3586 0.6857 0.6575 0.6713 0.9061
1.647 9.0 792 0.3422 0.6786 0.6717 0.6751 0.9070
1.647 10.0 880 0.3229 0.7042 0.6871 0.6956 0.9119

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2