mistral-sum-r4a16 / README.md
Taizer's picture
End of training
fe74390 verified
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mistral-sum-r4a16
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sebastien-roig/mistral-sum/runs/noft9dqa)
# mistral-sum-r4a16
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7039
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1541 | 0.0033 | 20 | 1.7466 |
| 1.7416 | 0.0067 | 40 | 1.7189 |
| 1.7384 | 0.0100 | 60 | 1.7093 |
| 1.7484 | 0.0134 | 80 | 1.7070 |
| 1.7301 | 0.0167 | 100 | 1.7039 |
### Framework versions
- PEFT 0.11.2.dev0
- Transformers 4.42.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1