opt-sum-v3 / README.md
Taizer's picture
End of training
1ce7c1c verified
---
license: other
library_name: peft
tags:
- generated_from_trainer
base_model: facebook/opt-350m
model-index:
- name: opt-sum-v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sebastien-roig/opt-sum/runs/wr4v0tm0)
# opt-sum-v3
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4983
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.9488 | 0.1672 | 100 | 2.5546 |
| 2.5852 | 0.3343 | 200 | 2.5237 |
| 2.5751 | 0.5015 | 300 | 2.5105 |
| 2.5611 | 0.6686 | 400 | 2.5036 |
| 2.5522 | 0.8358 | 500 | 2.4983 |
### Framework versions
- PEFT 0.11.2.dev0
- Transformers 4.42.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1