|
--- |
|
library_name: sentence-transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
language: |
|
- ru |
|
- en |
|
--- |
|
|
|
# bge-m3-unsupervised model for english and russian |
|
|
|
This is a tokenizer shrinked version of [BAAI/bge-m3-unsupervised](https://huggingface.co/BAAI/bge-m3-unsupervised). |
|
|
|
The current model has only English and Russian tokens left in the vocabulary. |
|
Thus, the vocabulary is 21% of the original, and number of parameters in the whole model is 63.3% of the original, without any loss in the quality of English and Russian embeddings. |
|
|
|
Notebook with code is available [here](https://github.com/BlessedTatonka/pet_projects/tree/main/huggingface/bge-m3-shrinking). |
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('TatonkaHF/bge-m3-unsupervised_en_ru') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('TatonkaHF/bge-m3-unsupervised_en_ru') |
|
model = AutoModel.from_pretrained('TatonkaHF/bge-m3-unsupervised_en_ru') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Specs |
|
|
|
Other bge-m3 models are also shrinked. |
|
|
|
| Model name | |
|
|---------------------------| |
|
| [bge-m3-retromae_en_ru](https://huggingface.co/TatonkaHF/bge-m3-retromae_en_ru) | |
|
| [bge-m3-unsupervised_en_ru](https://huggingface.co/TatonkaHF/bge-m3-unsupervised_en_ru) | |
|
| [bge-m3_en_ru](https://huggingface.co/TatonkaHF/bge-m3_en_ru) | |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Reference: |
|
|
|
Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, Zheng Liu. [BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation](https://arxiv.org/abs/2402.03216). |
|
|
|
Inspired by [LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) and [https://discuss.huggingface.co/t/tokenizer-shrinking-recipes/8564/1](https://discuss.huggingface.co/t/tokenizer-shrinking-recipes/8564/1). |
|
|
|
License: [mit](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md) |
|
|
|
<!--- Describe where people can find more information --> |