bge-micro / README.md
andersonbcdefg's picture
Update README.md
b7d720b
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
  - mteb
model-index:
  - name: bge_micro
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 66.26865671641792
          - type: ap
            value: 28.174006539079688
          - type: f1
            value: 59.724963358211035
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 75.3691
          - type: ap
            value: 69.64182876373573
          - type: f1
            value: 75.2906345000088
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 35.806
          - type: f1
            value: 35.506516495961904
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.24
          - type: map_at_10
            value: 42.832
          - type: map_at_100
            value: 43.797000000000004
          - type: map_at_1000
            value: 43.804
          - type: map_at_3
            value: 38.134
          - type: map_at_5
            value: 40.744
          - type: mrr_at_1
            value: 27.951999999999998
          - type: mrr_at_10
            value: 43.111
          - type: mrr_at_100
            value: 44.083
          - type: mrr_at_1000
            value: 44.09
          - type: mrr_at_3
            value: 38.431
          - type: mrr_at_5
            value: 41.019
          - type: ndcg_at_1
            value: 27.24
          - type: ndcg_at_10
            value: 51.513
          - type: ndcg_at_100
            value: 55.762
          - type: ndcg_at_1000
            value: 55.938
          - type: ndcg_at_3
            value: 41.743
          - type: ndcg_at_5
            value: 46.454
          - type: precision_at_1
            value: 27.24
          - type: precision_at_10
            value: 7.93
          - type: precision_at_100
            value: 0.9820000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 17.402
          - type: precision_at_5
            value: 12.731
          - type: recall_at_1
            value: 27.24
          - type: recall_at_10
            value: 79.303
          - type: recall_at_100
            value: 98.151
          - type: recall_at_1000
            value: 99.502
          - type: recall_at_3
            value: 52.205
          - type: recall_at_5
            value: 63.656
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 44.59766397469585
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 34.480143023109626
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 58.09326229984527
          - type: mrr
            value: 72.18429846546191
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 85.47582391622187
          - type: cos_sim_spearman
            value: 83.41635852964214
          - type: euclidean_pearson
            value: 84.21969728559216
          - type: euclidean_spearman
            value: 83.46575724558684
          - type: manhattan_pearson
            value: 83.83107014910223
          - type: manhattan_spearman
            value: 83.13321954800792
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 80.58116883116882
          - type: f1
            value: 80.53335622619781
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 37.13458676004344
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 29.720429607514898
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.051000000000002
          - type: map_at_10
            value: 36.291000000000004
          - type: map_at_100
            value: 37.632
          - type: map_at_1000
            value: 37.772
          - type: map_at_3
            value: 33.288000000000004
          - type: map_at_5
            value: 35.035
          - type: mrr_at_1
            value: 33.333
          - type: mrr_at_10
            value: 42.642
          - type: mrr_at_100
            value: 43.401
          - type: mrr_at_1000
            value: 43.463
          - type: mrr_at_3
            value: 40.272000000000006
          - type: mrr_at_5
            value: 41.753
          - type: ndcg_at_1
            value: 33.333
          - type: ndcg_at_10
            value: 42.291000000000004
          - type: ndcg_at_100
            value: 47.602
          - type: ndcg_at_1000
            value: 50.109
          - type: ndcg_at_3
            value: 38.033
          - type: ndcg_at_5
            value: 40.052
          - type: precision_at_1
            value: 33.333
          - type: precision_at_10
            value: 8.254999999999999
          - type: precision_at_100
            value: 1.353
          - type: precision_at_1000
            value: 0.185
          - type: precision_at_3
            value: 18.884
          - type: precision_at_5
            value: 13.447999999999999
          - type: recall_at_1
            value: 26.051000000000002
          - type: recall_at_10
            value: 53.107000000000006
          - type: recall_at_100
            value: 76.22
          - type: recall_at_1000
            value: 92.92399999999999
          - type: recall_at_3
            value: 40.073
          - type: recall_at_5
            value: 46.327
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.698999999999998
          - type: map_at_10
            value: 26.186
          - type: map_at_100
            value: 27.133000000000003
          - type: map_at_1000
            value: 27.256999999999998
          - type: map_at_3
            value: 24.264
          - type: map_at_5
            value: 25.307000000000002
          - type: mrr_at_1
            value: 24.712999999999997
          - type: mrr_at_10
            value: 30.703999999999997
          - type: mrr_at_100
            value: 31.445
          - type: mrr_at_1000
            value: 31.517
          - type: mrr_at_3
            value: 28.992
          - type: mrr_at_5
            value: 29.963
          - type: ndcg_at_1
            value: 24.712999999999997
          - type: ndcg_at_10
            value: 30.198000000000004
          - type: ndcg_at_100
            value: 34.412
          - type: ndcg_at_1000
            value: 37.174
          - type: ndcg_at_3
            value: 27.148
          - type: ndcg_at_5
            value: 28.464
          - type: precision_at_1
            value: 24.712999999999997
          - type: precision_at_10
            value: 5.489999999999999
          - type: precision_at_100
            value: 0.955
          - type: precision_at_1000
            value: 0.14400000000000002
          - type: precision_at_3
            value: 12.803
          - type: precision_at_5
            value: 8.981
          - type: recall_at_1
            value: 19.698999999999998
          - type: recall_at_10
            value: 37.595
          - type: recall_at_100
            value: 55.962
          - type: recall_at_1000
            value: 74.836
          - type: recall_at_3
            value: 28.538999999999998
          - type: recall_at_5
            value: 32.279
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 34.224
          - type: map_at_10
            value: 44.867000000000004
          - type: map_at_100
            value: 45.944
          - type: map_at_1000
            value: 46.013999999999996
          - type: map_at_3
            value: 42.009
          - type: map_at_5
            value: 43.684
          - type: mrr_at_1
            value: 39.436
          - type: mrr_at_10
            value: 48.301
          - type: mrr_at_100
            value: 49.055
          - type: mrr_at_1000
            value: 49.099
          - type: mrr_at_3
            value: 45.956
          - type: mrr_at_5
            value: 47.445
          - type: ndcg_at_1
            value: 39.436
          - type: ndcg_at_10
            value: 50.214000000000006
          - type: ndcg_at_100
            value: 54.63
          - type: ndcg_at_1000
            value: 56.165
          - type: ndcg_at_3
            value: 45.272
          - type: ndcg_at_5
            value: 47.826
          - type: precision_at_1
            value: 39.436
          - type: precision_at_10
            value: 8.037999999999998
          - type: precision_at_100
            value: 1.118
          - type: precision_at_1000
            value: 0.13
          - type: precision_at_3
            value: 20.125
          - type: precision_at_5
            value: 13.918
          - type: recall_at_1
            value: 34.224
          - type: recall_at_10
            value: 62.690999999999995
          - type: recall_at_100
            value: 81.951
          - type: recall_at_1000
            value: 92.93299999999999
          - type: recall_at_3
            value: 49.299
          - type: recall_at_5
            value: 55.533
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.375
          - type: map_at_10
            value: 28.366000000000003
          - type: map_at_100
            value: 29.363
          - type: map_at_1000
            value: 29.458000000000002
          - type: map_at_3
            value: 26.247
          - type: map_at_5
            value: 27.439000000000004
          - type: mrr_at_1
            value: 22.938
          - type: mrr_at_10
            value: 30.072
          - type: mrr_at_100
            value: 30.993
          - type: mrr_at_1000
            value: 31.070999999999998
          - type: mrr_at_3
            value: 28.004
          - type: mrr_at_5
            value: 29.179
          - type: ndcg_at_1
            value: 22.938
          - type: ndcg_at_10
            value: 32.516
          - type: ndcg_at_100
            value: 37.641999999999996
          - type: ndcg_at_1000
            value: 40.150999999999996
          - type: ndcg_at_3
            value: 28.341
          - type: ndcg_at_5
            value: 30.394
          - type: precision_at_1
            value: 22.938
          - type: precision_at_10
            value: 5.028
          - type: precision_at_100
            value: 0.8
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 12.052999999999999
          - type: precision_at_5
            value: 8.497
          - type: recall_at_1
            value: 21.375
          - type: recall_at_10
            value: 43.682
          - type: recall_at_100
            value: 67.619
          - type: recall_at_1000
            value: 86.64699999999999
          - type: recall_at_3
            value: 32.478
          - type: recall_at_5
            value: 37.347
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 14.95
          - type: map_at_10
            value: 21.417
          - type: map_at_100
            value: 22.525000000000002
          - type: map_at_1000
            value: 22.665
          - type: map_at_3
            value: 18.684
          - type: map_at_5
            value: 20.275000000000002
          - type: mrr_at_1
            value: 18.159
          - type: mrr_at_10
            value: 25.373
          - type: mrr_at_100
            value: 26.348
          - type: mrr_at_1000
            value: 26.432
          - type: mrr_at_3
            value: 22.698999999999998
          - type: mrr_at_5
            value: 24.254
          - type: ndcg_at_1
            value: 18.159
          - type: ndcg_at_10
            value: 26.043
          - type: ndcg_at_100
            value: 31.491999999999997
          - type: ndcg_at_1000
            value: 34.818
          - type: ndcg_at_3
            value: 21.05
          - type: ndcg_at_5
            value: 23.580000000000002
          - type: precision_at_1
            value: 18.159
          - type: precision_at_10
            value: 4.938
          - type: precision_at_100
            value: 0.872
          - type: precision_at_1000
            value: 0.129
          - type: precision_at_3
            value: 9.908999999999999
          - type: precision_at_5
            value: 7.611999999999999
          - type: recall_at_1
            value: 14.95
          - type: recall_at_10
            value: 36.285000000000004
          - type: recall_at_100
            value: 60.431999999999995
          - type: recall_at_1000
            value: 84.208
          - type: recall_at_3
            value: 23.006
          - type: recall_at_5
            value: 29.304999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.580000000000002
          - type: map_at_10
            value: 32.906
          - type: map_at_100
            value: 34.222
          - type: map_at_1000
            value: 34.346
          - type: map_at_3
            value: 29.891000000000002
          - type: map_at_5
            value: 31.679000000000002
          - type: mrr_at_1
            value: 28.778
          - type: mrr_at_10
            value: 37.783
          - type: mrr_at_100
            value: 38.746
          - type: mrr_at_1000
            value: 38.804
          - type: mrr_at_3
            value: 35.098
          - type: mrr_at_5
            value: 36.739
          - type: ndcg_at_1
            value: 28.778
          - type: ndcg_at_10
            value: 38.484
          - type: ndcg_at_100
            value: 44.322
          - type: ndcg_at_1000
            value: 46.772000000000006
          - type: ndcg_at_3
            value: 33.586
          - type: ndcg_at_5
            value: 36.098
          - type: precision_at_1
            value: 28.778
          - type: precision_at_10
            value: 7.151000000000001
          - type: precision_at_100
            value: 1.185
          - type: precision_at_1000
            value: 0.158
          - type: precision_at_3
            value: 16.105
          - type: precision_at_5
            value: 11.704
          - type: recall_at_1
            value: 23.580000000000002
          - type: recall_at_10
            value: 50.151999999999994
          - type: recall_at_100
            value: 75.114
          - type: recall_at_1000
            value: 91.467
          - type: recall_at_3
            value: 36.552
          - type: recall_at_5
            value: 43.014
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.669999999999998
          - type: map_at_10
            value: 28.687
          - type: map_at_100
            value: 30.061
          - type: map_at_1000
            value: 30.197000000000003
          - type: map_at_3
            value: 26.134
          - type: map_at_5
            value: 27.508
          - type: mrr_at_1
            value: 26.256
          - type: mrr_at_10
            value: 34.105999999999995
          - type: mrr_at_100
            value: 35.137
          - type: mrr_at_1000
            value: 35.214
          - type: mrr_at_3
            value: 31.791999999999998
          - type: mrr_at_5
            value: 33.145
          - type: ndcg_at_1
            value: 26.256
          - type: ndcg_at_10
            value: 33.68
          - type: ndcg_at_100
            value: 39.7
          - type: ndcg_at_1000
            value: 42.625
          - type: ndcg_at_3
            value: 29.457
          - type: ndcg_at_5
            value: 31.355
          - type: precision_at_1
            value: 26.256
          - type: precision_at_10
            value: 6.2330000000000005
          - type: precision_at_100
            value: 1.08
          - type: precision_at_1000
            value: 0.149
          - type: precision_at_3
            value: 14.193
          - type: precision_at_5
            value: 10.113999999999999
          - type: recall_at_1
            value: 20.669999999999998
          - type: recall_at_10
            value: 43.254999999999995
          - type: recall_at_100
            value: 69.118
          - type: recall_at_1000
            value: 89.408
          - type: recall_at_3
            value: 31.135
          - type: recall_at_5
            value: 36.574
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.488833333333336
          - type: map_at_10
            value: 29.025416666666665
          - type: map_at_100
            value: 30.141249999999992
          - type: map_at_1000
            value: 30.264083333333335
          - type: map_at_3
            value: 26.599333333333337
          - type: map_at_5
            value: 28.004666666666665
          - type: mrr_at_1
            value: 25.515
          - type: mrr_at_10
            value: 32.8235
          - type: mrr_at_100
            value: 33.69958333333333
          - type: mrr_at_1000
            value: 33.77191666666668
          - type: mrr_at_3
            value: 30.581000000000003
          - type: mrr_at_5
            value: 31.919666666666668
          - type: ndcg_at_1
            value: 25.515
          - type: ndcg_at_10
            value: 33.64241666666666
          - type: ndcg_at_100
            value: 38.75816666666667
          - type: ndcg_at_1000
            value: 41.472166666666666
          - type: ndcg_at_3
            value: 29.435083333333335
          - type: ndcg_at_5
            value: 31.519083333333338
          - type: precision_at_1
            value: 25.515
          - type: precision_at_10
            value: 5.89725
          - type: precision_at_100
            value: 0.9918333333333335
          - type: precision_at_1000
            value: 0.14075
          - type: precision_at_3
            value: 13.504000000000001
          - type: precision_at_5
            value: 9.6885
          - type: recall_at_1
            value: 21.488833333333336
          - type: recall_at_10
            value: 43.60808333333333
          - type: recall_at_100
            value: 66.5045
          - type: recall_at_1000
            value: 85.70024999999998
          - type: recall_at_3
            value: 31.922166666666662
          - type: recall_at_5
            value: 37.29758333333334
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.781
          - type: map_at_10
            value: 27.173000000000002
          - type: map_at_100
            value: 27.967
          - type: map_at_1000
            value: 28.061999999999998
          - type: map_at_3
            value: 24.973
          - type: map_at_5
            value: 26.279999999999998
          - type: mrr_at_1
            value: 23.773
          - type: mrr_at_10
            value: 29.849999999999998
          - type: mrr_at_100
            value: 30.595
          - type: mrr_at_1000
            value: 30.669
          - type: mrr_at_3
            value: 27.761000000000003
          - type: mrr_at_5
            value: 29.003
          - type: ndcg_at_1
            value: 23.773
          - type: ndcg_at_10
            value: 31.033
          - type: ndcg_at_100
            value: 35.174
          - type: ndcg_at_1000
            value: 37.72
          - type: ndcg_at_3
            value: 26.927
          - type: ndcg_at_5
            value: 29.047
          - type: precision_at_1
            value: 23.773
          - type: precision_at_10
            value: 4.8469999999999995
          - type: precision_at_100
            value: 0.75
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 11.452
          - type: precision_at_5
            value: 8.129
          - type: recall_at_1
            value: 20.781
          - type: recall_at_10
            value: 40.463
          - type: recall_at_100
            value: 59.483
          - type: recall_at_1000
            value: 78.396
          - type: recall_at_3
            value: 29.241
          - type: recall_at_5
            value: 34.544000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.074000000000002
          - type: map_at_10
            value: 20.757
          - type: map_at_100
            value: 21.72
          - type: map_at_1000
            value: 21.844
          - type: map_at_3
            value: 18.929000000000002
          - type: map_at_5
            value: 19.894000000000002
          - type: mrr_at_1
            value: 18.307000000000002
          - type: mrr_at_10
            value: 24.215
          - type: mrr_at_100
            value: 25.083
          - type: mrr_at_1000
            value: 25.168000000000003
          - type: mrr_at_3
            value: 22.316
          - type: mrr_at_5
            value: 23.36
          - type: ndcg_at_1
            value: 18.307000000000002
          - type: ndcg_at_10
            value: 24.651999999999997
          - type: ndcg_at_100
            value: 29.296
          - type: ndcg_at_1000
            value: 32.538
          - type: ndcg_at_3
            value: 21.243000000000002
          - type: ndcg_at_5
            value: 22.727
          - type: precision_at_1
            value: 18.307000000000002
          - type: precision_at_10
            value: 4.446
          - type: precision_at_100
            value: 0.792
          - type: precision_at_1000
            value: 0.124
          - type: precision_at_3
            value: 9.945
          - type: precision_at_5
            value: 7.123
          - type: recall_at_1
            value: 15.074000000000002
          - type: recall_at_10
            value: 33.031
          - type: recall_at_100
            value: 53.954
          - type: recall_at_1000
            value: 77.631
          - type: recall_at_3
            value: 23.253
          - type: recall_at_5
            value: 27.218999999999998
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.04
          - type: map_at_10
            value: 28.226000000000003
          - type: map_at_100
            value: 29.337999999999997
          - type: map_at_1000
            value: 29.448999999999998
          - type: map_at_3
            value: 25.759
          - type: map_at_5
            value: 27.226
          - type: mrr_at_1
            value: 24.067
          - type: mrr_at_10
            value: 31.646
          - type: mrr_at_100
            value: 32.592999999999996
          - type: mrr_at_1000
            value: 32.668
          - type: mrr_at_3
            value: 29.26
          - type: mrr_at_5
            value: 30.725
          - type: ndcg_at_1
            value: 24.067
          - type: ndcg_at_10
            value: 32.789
          - type: ndcg_at_100
            value: 38.253
          - type: ndcg_at_1000
            value: 40.961
          - type: ndcg_at_3
            value: 28.189999999999998
          - type: ndcg_at_5
            value: 30.557000000000002
          - type: precision_at_1
            value: 24.067
          - type: precision_at_10
            value: 5.532
          - type: precision_at_100
            value: 0.928
          - type: precision_at_1000
            value: 0.128
          - type: precision_at_3
            value: 12.5
          - type: precision_at_5
            value: 9.16
          - type: recall_at_1
            value: 21.04
          - type: recall_at_10
            value: 43.167
          - type: recall_at_100
            value: 67.569
          - type: recall_at_1000
            value: 86.817
          - type: recall_at_3
            value: 31.178
          - type: recall_at_5
            value: 36.730000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.439
          - type: map_at_10
            value: 28.531000000000002
          - type: map_at_100
            value: 29.953999999999997
          - type: map_at_1000
            value: 30.171
          - type: map_at_3
            value: 26.546999999999997
          - type: map_at_5
            value: 27.71
          - type: mrr_at_1
            value: 26.087
          - type: mrr_at_10
            value: 32.635
          - type: mrr_at_100
            value: 33.629999999999995
          - type: mrr_at_1000
            value: 33.71
          - type: mrr_at_3
            value: 30.731
          - type: mrr_at_5
            value: 31.807999999999996
          - type: ndcg_at_1
            value: 26.087
          - type: ndcg_at_10
            value: 32.975
          - type: ndcg_at_100
            value: 38.853
          - type: ndcg_at_1000
            value: 42.158
          - type: ndcg_at_3
            value: 29.894
          - type: ndcg_at_5
            value: 31.397000000000002
          - type: precision_at_1
            value: 26.087
          - type: precision_at_10
            value: 6.2059999999999995
          - type: precision_at_100
            value: 1.298
          - type: precision_at_1000
            value: 0.22200000000000003
          - type: precision_at_3
            value: 14.097000000000001
          - type: precision_at_5
            value: 9.959999999999999
          - type: recall_at_1
            value: 21.439
          - type: recall_at_10
            value: 40.519
          - type: recall_at_100
            value: 68.073
          - type: recall_at_1000
            value: 89.513
          - type: recall_at_3
            value: 31.513
          - type: recall_at_5
            value: 35.702
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.983
          - type: map_at_10
            value: 24.898
          - type: map_at_100
            value: 25.836
          - type: map_at_1000
            value: 25.934
          - type: map_at_3
            value: 22.467000000000002
          - type: map_at_5
            value: 24.019
          - type: mrr_at_1
            value: 20.333000000000002
          - type: mrr_at_10
            value: 26.555
          - type: mrr_at_100
            value: 27.369
          - type: mrr_at_1000
            value: 27.448
          - type: mrr_at_3
            value: 24.091
          - type: mrr_at_5
            value: 25.662000000000003
          - type: ndcg_at_1
            value: 20.333000000000002
          - type: ndcg_at_10
            value: 28.834
          - type: ndcg_at_100
            value: 33.722
          - type: ndcg_at_1000
            value: 36.475
          - type: ndcg_at_3
            value: 24.08
          - type: ndcg_at_5
            value: 26.732
          - type: precision_at_1
            value: 20.333000000000002
          - type: precision_at_10
            value: 4.603
          - type: precision_at_100
            value: 0.771
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 9.982000000000001
          - type: precision_at_5
            value: 7.6160000000000005
          - type: recall_at_1
            value: 18.983
          - type: recall_at_10
            value: 39.35
          - type: recall_at_100
            value: 62.559
          - type: recall_at_1000
            value: 83.623
          - type: recall_at_3
            value: 26.799
          - type: recall_at_5
            value: 32.997
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.621
          - type: map_at_10
            value: 17.298
          - type: map_at_100
            value: 18.983
          - type: map_at_1000
            value: 19.182
          - type: map_at_3
            value: 14.552999999999999
          - type: map_at_5
            value: 15.912
          - type: mrr_at_1
            value: 23.453
          - type: mrr_at_10
            value: 33.932
          - type: mrr_at_100
            value: 34.891
          - type: mrr_at_1000
            value: 34.943000000000005
          - type: mrr_at_3
            value: 30.770999999999997
          - type: mrr_at_5
            value: 32.556000000000004
          - type: ndcg_at_1
            value: 23.453
          - type: ndcg_at_10
            value: 24.771
          - type: ndcg_at_100
            value: 31.738
          - type: ndcg_at_1000
            value: 35.419
          - type: ndcg_at_3
            value: 20.22
          - type: ndcg_at_5
            value: 21.698999999999998
          - type: precision_at_1
            value: 23.453
          - type: precision_at_10
            value: 7.785
          - type: precision_at_100
            value: 1.5270000000000001
          - type: precision_at_1000
            value: 0.22
          - type: precision_at_3
            value: 14.962
          - type: precision_at_5
            value: 11.401
          - type: recall_at_1
            value: 10.621
          - type: recall_at_10
            value: 29.726000000000003
          - type: recall_at_100
            value: 53.996
          - type: recall_at_1000
            value: 74.878
          - type: recall_at_3
            value: 18.572
          - type: recall_at_5
            value: 22.994999999999997
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.819
          - type: map_at_10
            value: 14.188
          - type: map_at_100
            value: 19.627
          - type: map_at_1000
            value: 20.757
          - type: map_at_3
            value: 10.352
          - type: map_at_5
            value: 12.096
          - type: mrr_at_1
            value: 54.25
          - type: mrr_at_10
            value: 63.798
          - type: mrr_at_100
            value: 64.25
          - type: mrr_at_1000
            value: 64.268
          - type: mrr_at_3
            value: 61.667
          - type: mrr_at_5
            value: 63.153999999999996
          - type: ndcg_at_1
            value: 39.5
          - type: ndcg_at_10
            value: 31.064999999999998
          - type: ndcg_at_100
            value: 34.701
          - type: ndcg_at_1000
            value: 41.687000000000005
          - type: ndcg_at_3
            value: 34.455999999999996
          - type: ndcg_at_5
            value: 32.919
          - type: precision_at_1
            value: 54.25
          - type: precision_at_10
            value: 25.4
          - type: precision_at_100
            value: 7.79
          - type: precision_at_1000
            value: 1.577
          - type: precision_at_3
            value: 39.333
          - type: precision_at_5
            value: 33.6
          - type: recall_at_1
            value: 6.819
          - type: recall_at_10
            value: 19.134
          - type: recall_at_100
            value: 41.191
          - type: recall_at_1000
            value: 64.699
          - type: recall_at_3
            value: 11.637
          - type: recall_at_5
            value: 14.807
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 42.474999999999994
          - type: f1
            value: 37.79154895614037
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 53.187
          - type: map_at_10
            value: 64.031
          - type: map_at_100
            value: 64.507
          - type: map_at_1000
            value: 64.526
          - type: map_at_3
            value: 61.926
          - type: map_at_5
            value: 63.278999999999996
          - type: mrr_at_1
            value: 57.396
          - type: mrr_at_10
            value: 68.296
          - type: mrr_at_100
            value: 68.679
          - type: mrr_at_1000
            value: 68.688
          - type: mrr_at_3
            value: 66.289
          - type: mrr_at_5
            value: 67.593
          - type: ndcg_at_1
            value: 57.396
          - type: ndcg_at_10
            value: 69.64
          - type: ndcg_at_100
            value: 71.75399999999999
          - type: ndcg_at_1000
            value: 72.179
          - type: ndcg_at_3
            value: 65.66199999999999
          - type: ndcg_at_5
            value: 67.932
          - type: precision_at_1
            value: 57.396
          - type: precision_at_10
            value: 9.073
          - type: precision_at_100
            value: 1.024
          - type: precision_at_1000
            value: 0.107
          - type: precision_at_3
            value: 26.133
          - type: precision_at_5
            value: 16.943
          - type: recall_at_1
            value: 53.187
          - type: recall_at_10
            value: 82.839
          - type: recall_at_100
            value: 92.231
          - type: recall_at_1000
            value: 95.249
          - type: recall_at_3
            value: 72.077
          - type: recall_at_5
            value: 77.667
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.957
          - type: map_at_10
            value: 18.427
          - type: map_at_100
            value: 19.885
          - type: map_at_1000
            value: 20.088
          - type: map_at_3
            value: 15.709000000000001
          - type: map_at_5
            value: 17.153
          - type: mrr_at_1
            value: 22.377
          - type: mrr_at_10
            value: 30.076999999999998
          - type: mrr_at_100
            value: 31.233
          - type: mrr_at_1000
            value: 31.311
          - type: mrr_at_3
            value: 27.521
          - type: mrr_at_5
            value: 29.025000000000002
          - type: ndcg_at_1
            value: 22.377
          - type: ndcg_at_10
            value: 24.367
          - type: ndcg_at_100
            value: 31.04
          - type: ndcg_at_1000
            value: 35.106
          - type: ndcg_at_3
            value: 21.051000000000002
          - type: ndcg_at_5
            value: 22.231
          - type: precision_at_1
            value: 22.377
          - type: precision_at_10
            value: 7.005999999999999
          - type: precision_at_100
            value: 1.3599999999999999
          - type: precision_at_1000
            value: 0.208
          - type: precision_at_3
            value: 13.991999999999999
          - type: precision_at_5
            value: 10.833
          - type: recall_at_1
            value: 10.957
          - type: recall_at_10
            value: 30.274
          - type: recall_at_100
            value: 55.982
          - type: recall_at_1000
            value: 80.757
          - type: recall_at_3
            value: 19.55
          - type: recall_at_5
            value: 24.105999999999998
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.526999999999997
          - type: map_at_10
            value: 40.714
          - type: map_at_100
            value: 41.655
          - type: map_at_1000
            value: 41.744
          - type: map_at_3
            value: 38.171
          - type: map_at_5
            value: 39.646
          - type: mrr_at_1
            value: 59.055
          - type: mrr_at_10
            value: 66.411
          - type: mrr_at_100
            value: 66.85900000000001
          - type: mrr_at_1000
            value: 66.88300000000001
          - type: mrr_at_3
            value: 64.846
          - type: mrr_at_5
            value: 65.824
          - type: ndcg_at_1
            value: 59.055
          - type: ndcg_at_10
            value: 49.732
          - type: ndcg_at_100
            value: 53.441
          - type: ndcg_at_1000
            value: 55.354000000000006
          - type: ndcg_at_3
            value: 45.551
          - type: ndcg_at_5
            value: 47.719
          - type: precision_at_1
            value: 59.055
          - type: precision_at_10
            value: 10.366
          - type: precision_at_100
            value: 1.328
          - type: precision_at_1000
            value: 0.158
          - type: precision_at_3
            value: 28.322999999999997
          - type: precision_at_5
            value: 18.709
          - type: recall_at_1
            value: 29.526999999999997
          - type: recall_at_10
            value: 51.83
          - type: recall_at_100
            value: 66.42099999999999
          - type: recall_at_1000
            value: 79.176
          - type: recall_at_3
            value: 42.485
          - type: recall_at_5
            value: 46.772000000000006
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 70.69959999999999
          - type: ap
            value: 64.95539314492567
          - type: f1
            value: 70.5554935943308
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 13.153
          - type: map_at_10
            value: 22.277
          - type: map_at_100
            value: 23.462
          - type: map_at_1000
            value: 23.546
          - type: map_at_3
            value: 19.026
          - type: map_at_5
            value: 20.825
          - type: mrr_at_1
            value: 13.539000000000001
          - type: mrr_at_10
            value: 22.753
          - type: mrr_at_100
            value: 23.906
          - type: mrr_at_1000
            value: 23.982999999999997
          - type: mrr_at_3
            value: 19.484
          - type: mrr_at_5
            value: 21.306
          - type: ndcg_at_1
            value: 13.553
          - type: ndcg_at_10
            value: 27.848
          - type: ndcg_at_100
            value: 33.900999999999996
          - type: ndcg_at_1000
            value: 36.155
          - type: ndcg_at_3
            value: 21.116
          - type: ndcg_at_5
            value: 24.349999999999998
          - type: precision_at_1
            value: 13.553
          - type: precision_at_10
            value: 4.695
          - type: precision_at_100
            value: 0.7779999999999999
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 9.207
          - type: precision_at_5
            value: 7.155
          - type: recall_at_1
            value: 13.153
          - type: recall_at_10
            value: 45.205
          - type: recall_at_100
            value: 73.978
          - type: recall_at_1000
            value: 91.541
          - type: recall_at_3
            value: 26.735
          - type: recall_at_5
            value: 34.493
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 90.2530779753762
          - type: f1
            value: 89.59402328284126
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 67.95029639762883
          - type: f1
            value: 48.99988836758662
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.77740416946874
          - type: f1
            value: 66.21341120969817
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.03631472763955
          - type: f1
            value: 72.5779336237941
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 31.98182669158824
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 29.259462874407582
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.29342377286548
          - type: mrr
            value: 32.32805799117226
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.692
          - type: map_at_10
            value: 10.559000000000001
          - type: map_at_100
            value: 13.665
          - type: map_at_1000
            value: 15.082
          - type: map_at_3
            value: 7.68
          - type: map_at_5
            value: 8.844000000000001
          - type: mrr_at_1
            value: 38.7
          - type: mrr_at_10
            value: 47.864000000000004
          - type: mrr_at_100
            value: 48.583999999999996
          - type: mrr_at_1000
            value: 48.636
          - type: mrr_at_3
            value: 45.975
          - type: mrr_at_5
            value: 47.074
          - type: ndcg_at_1
            value: 36.378
          - type: ndcg_at_10
            value: 30.038999999999998
          - type: ndcg_at_100
            value: 28.226000000000003
          - type: ndcg_at_1000
            value: 36.958
          - type: ndcg_at_3
            value: 33.469
          - type: ndcg_at_5
            value: 32.096999999999994
          - type: precision_at_1
            value: 38.080000000000005
          - type: precision_at_10
            value: 22.941
          - type: precision_at_100
            value: 7.632
          - type: precision_at_1000
            value: 2.0420000000000003
          - type: precision_at_3
            value: 31.579
          - type: precision_at_5
            value: 28.235
          - type: recall_at_1
            value: 4.692
          - type: recall_at_10
            value: 14.496
          - type: recall_at_100
            value: 29.69
          - type: recall_at_1000
            value: 61.229
          - type: recall_at_3
            value: 8.871
          - type: recall_at_5
            value: 10.825999999999999
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 13.120000000000001
          - type: map_at_10
            value: 24.092
          - type: map_at_100
            value: 25.485999999999997
          - type: map_at_1000
            value: 25.557999999999996
          - type: map_at_3
            value: 20.076
          - type: map_at_5
            value: 22.368
          - type: mrr_at_1
            value: 15.093
          - type: mrr_at_10
            value: 26.142
          - type: mrr_at_100
            value: 27.301
          - type: mrr_at_1000
            value: 27.357
          - type: mrr_at_3
            value: 22.364
          - type: mrr_at_5
            value: 24.564
          - type: ndcg_at_1
            value: 15.093
          - type: ndcg_at_10
            value: 30.734
          - type: ndcg_at_100
            value: 37.147999999999996
          - type: ndcg_at_1000
            value: 38.997
          - type: ndcg_at_3
            value: 22.82
          - type: ndcg_at_5
            value: 26.806
          - type: precision_at_1
            value: 15.093
          - type: precision_at_10
            value: 5.863
          - type: precision_at_100
            value: 0.942
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 11.047
          - type: precision_at_5
            value: 8.863999999999999
          - type: recall_at_1
            value: 13.120000000000001
          - type: recall_at_10
            value: 49.189
          - type: recall_at_100
            value: 78.032
          - type: recall_at_1000
            value: 92.034
          - type: recall_at_3
            value: 28.483000000000004
          - type: recall_at_5
            value: 37.756
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 67.765
          - type: map_at_10
            value: 81.069
          - type: map_at_100
            value: 81.757
          - type: map_at_1000
            value: 81.782
          - type: map_at_3
            value: 78.148
          - type: map_at_5
            value: 79.95400000000001
          - type: mrr_at_1
            value: 77.8
          - type: mrr_at_10
            value: 84.639
          - type: mrr_at_100
            value: 84.789
          - type: mrr_at_1000
            value: 84.79100000000001
          - type: mrr_at_3
            value: 83.467
          - type: mrr_at_5
            value: 84.251
          - type: ndcg_at_1
            value: 77.82
          - type: ndcg_at_10
            value: 85.286
          - type: ndcg_at_100
            value: 86.86500000000001
          - type: ndcg_at_1000
            value: 87.062
          - type: ndcg_at_3
            value: 82.116
          - type: ndcg_at_5
            value: 83.811
          - type: precision_at_1
            value: 77.82
          - type: precision_at_10
            value: 12.867999999999999
          - type: precision_at_100
            value: 1.498
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 35.723
          - type: precision_at_5
            value: 23.52
          - type: recall_at_1
            value: 67.765
          - type: recall_at_10
            value: 93.381
          - type: recall_at_100
            value: 98.901
          - type: recall_at_1000
            value: 99.864
          - type: recall_at_3
            value: 84.301
          - type: recall_at_5
            value: 89.049
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 45.27190981742137
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 54.47444004585028
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.213
          - type: map_at_10
            value: 10.166
          - type: map_at_100
            value: 11.987
          - type: map_at_1000
            value: 12.285
          - type: map_at_3
            value: 7.538
          - type: map_at_5
            value: 8.606
          - type: mrr_at_1
            value: 20.8
          - type: mrr_at_10
            value: 30.066
          - type: mrr_at_100
            value: 31.290000000000003
          - type: mrr_at_1000
            value: 31.357000000000003
          - type: mrr_at_3
            value: 27.083000000000002
          - type: mrr_at_5
            value: 28.748
          - type: ndcg_at_1
            value: 20.8
          - type: ndcg_at_10
            value: 17.258000000000003
          - type: ndcg_at_100
            value: 24.801000000000002
          - type: ndcg_at_1000
            value: 30.348999999999997
          - type: ndcg_at_3
            value: 16.719
          - type: ndcg_at_5
            value: 14.145
          - type: precision_at_1
            value: 20.8
          - type: precision_at_10
            value: 8.88
          - type: precision_at_100
            value: 1.9789999999999999
          - type: precision_at_1000
            value: 0.332
          - type: precision_at_3
            value: 15.5
          - type: precision_at_5
            value: 12.1
          - type: recall_at_1
            value: 4.213
          - type: recall_at_10
            value: 17.983
          - type: recall_at_100
            value: 40.167
          - type: recall_at_1000
            value: 67.43
          - type: recall_at_3
            value: 9.433
          - type: recall_at_5
            value: 12.267999999999999
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 80.36742239848913
          - type: cos_sim_spearman
            value: 72.39470010828755
          - type: euclidean_pearson
            value: 77.26919895870947
          - type: euclidean_spearman
            value: 72.26534999077315
          - type: manhattan_pearson
            value: 77.04066349814258
          - type: manhattan_spearman
            value: 72.0072248699278
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 80.26991474037257
          - type: cos_sim_spearman
            value: 71.90287122017716
          - type: euclidean_pearson
            value: 76.68006075912453
          - type: euclidean_spearman
            value: 71.69301858764365
          - type: manhattan_pearson
            value: 76.72277285842371
          - type: manhattan_spearman
            value: 71.73265239703795
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 79.74371413317881
          - type: cos_sim_spearman
            value: 80.9279612820358
          - type: euclidean_pearson
            value: 80.6417435294782
          - type: euclidean_spearman
            value: 81.17460969254459
          - type: manhattan_pearson
            value: 80.51820155178402
          - type: manhattan_spearman
            value: 81.08028700017084
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 80.37085777051112
          - type: cos_sim_spearman
            value: 76.60308382518285
          - type: euclidean_pearson
            value: 79.59684787227351
          - type: euclidean_spearman
            value: 76.8769048249242
          - type: manhattan_pearson
            value: 79.55617632538295
          - type: manhattan_spearman
            value: 76.90186497973124
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 83.99513105301321
          - type: cos_sim_spearman
            value: 84.92034548133665
          - type: euclidean_pearson
            value: 84.70872540095195
          - type: euclidean_spearman
            value: 85.14591726040749
          - type: manhattan_pearson
            value: 84.65707417430595
          - type: manhattan_spearman
            value: 85.10407163865375
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 79.40758449150897
          - type: cos_sim_spearman
            value: 80.71692246880549
          - type: euclidean_pearson
            value: 80.51658552062683
          - type: euclidean_spearman
            value: 80.87118389043233
          - type: manhattan_pearson
            value: 80.41534690825016
          - type: manhattan_spearman
            value: 80.73925282537256
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 84.93617076910748
          - type: cos_sim_spearman
            value: 85.61118538966805
          - type: euclidean_pearson
            value: 85.56187558635287
          - type: euclidean_spearman
            value: 85.21910090757267
          - type: manhattan_pearson
            value: 85.29916699037645
          - type: manhattan_spearman
            value: 84.96820527868671
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 64.22294088543077
          - type: cos_sim_spearman
            value: 65.89748502901078
          - type: euclidean_pearson
            value: 66.15637850660805
          - type: euclidean_spearman
            value: 65.86095841381278
          - type: manhattan_pearson
            value: 66.80966197857856
          - type: manhattan_spearman
            value: 66.48325202219692
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 81.75298158703048
          - type: cos_sim_spearman
            value: 81.32168373072322
          - type: euclidean_pearson
            value: 82.3251793712207
          - type: euclidean_spearman
            value: 81.31655163330606
          - type: manhattan_pearson
            value: 82.14136865023298
          - type: manhattan_spearman
            value: 81.13410964028606
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 78.77937068780793
          - type: mrr
            value: 93.334709952357
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 50.705999999999996
          - type: map_at_10
            value: 60.699999999999996
          - type: map_at_100
            value: 61.256
          - type: map_at_1000
            value: 61.285000000000004
          - type: map_at_3
            value: 57.633
          - type: map_at_5
            value: 59.648
          - type: mrr_at_1
            value: 53
          - type: mrr_at_10
            value: 61.717999999999996
          - type: mrr_at_100
            value: 62.165000000000006
          - type: mrr_at_1000
            value: 62.190999999999995
          - type: mrr_at_3
            value: 59.389
          - type: mrr_at_5
            value: 60.922
          - type: ndcg_at_1
            value: 53
          - type: ndcg_at_10
            value: 65.413
          - type: ndcg_at_100
            value: 68.089
          - type: ndcg_at_1000
            value: 69.01899999999999
          - type: ndcg_at_3
            value: 60.327
          - type: ndcg_at_5
            value: 63.263999999999996
          - type: precision_at_1
            value: 53
          - type: precision_at_10
            value: 8.933
          - type: precision_at_100
            value: 1.04
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 23.778
          - type: precision_at_5
            value: 16.2
          - type: recall_at_1
            value: 50.705999999999996
          - type: recall_at_10
            value: 78.633
          - type: recall_at_100
            value: 91.333
          - type: recall_at_1000
            value: 99
          - type: recall_at_3
            value: 65.328
          - type: recall_at_5
            value: 72.583
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.82178217821782
          - type: cos_sim_ap
            value: 95.30078788098801
          - type: cos_sim_f1
            value: 91.11549851924975
          - type: cos_sim_precision
            value: 89.96101364522417
          - type: cos_sim_recall
            value: 92.30000000000001
          - type: dot_accuracy
            value: 99.74851485148515
          - type: dot_ap
            value: 93.12383012680787
          - type: dot_f1
            value: 87.17171717171716
          - type: dot_precision
            value: 88.06122448979592
          - type: dot_recall
            value: 86.3
          - type: euclidean_accuracy
            value: 99.82673267326733
          - type: euclidean_ap
            value: 95.29507269622621
          - type: euclidean_f1
            value: 91.3151364764268
          - type: euclidean_precision
            value: 90.64039408866995
          - type: euclidean_recall
            value: 92
          - type: manhattan_accuracy
            value: 99.82178217821782
          - type: manhattan_ap
            value: 95.34300712110257
          - type: manhattan_f1
            value: 91.05367793240556
          - type: manhattan_precision
            value: 90.51383399209486
          - type: manhattan_recall
            value: 91.60000000000001
          - type: max_accuracy
            value: 99.82673267326733
          - type: max_ap
            value: 95.34300712110257
          - type: max_f1
            value: 91.3151364764268
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 53.10993894014712
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 34.67216071080345
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 48.96344255085851
          - type: mrr
            value: 49.816123419064596
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.580410074992177
          - type: cos_sim_spearman
            value: 31.155995112739966
          - type: dot_pearson
            value: 31.112094423048998
          - type: dot_spearman
            value: 31.29974829801922
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.17700000000000002
          - type: map_at_10
            value: 1.22
          - type: map_at_100
            value: 6.2170000000000005
          - type: map_at_1000
            value: 15.406
          - type: map_at_3
            value: 0.483
          - type: map_at_5
            value: 0.729
          - type: mrr_at_1
            value: 64
          - type: mrr_at_10
            value: 76.333
          - type: mrr_at_100
            value: 76.47
          - type: mrr_at_1000
            value: 76.47
          - type: mrr_at_3
            value: 75
          - type: mrr_at_5
            value: 76
          - type: ndcg_at_1
            value: 59
          - type: ndcg_at_10
            value: 52.62
          - type: ndcg_at_100
            value: 39.932
          - type: ndcg_at_1000
            value: 37.317
          - type: ndcg_at_3
            value: 57.123000000000005
          - type: ndcg_at_5
            value: 56.376000000000005
          - type: precision_at_1
            value: 64
          - type: precision_at_10
            value: 55.800000000000004
          - type: precision_at_100
            value: 41.04
          - type: precision_at_1000
            value: 17.124
          - type: precision_at_3
            value: 63.333
          - type: precision_at_5
            value: 62
          - type: recall_at_1
            value: 0.17700000000000002
          - type: recall_at_10
            value: 1.46
          - type: recall_at_100
            value: 9.472999999999999
          - type: recall_at_1000
            value: 35.661
          - type: recall_at_3
            value: 0.527
          - type: recall_at_5
            value: 0.8250000000000001
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.539
          - type: map_at_10
            value: 7.178
          - type: map_at_100
            value: 12.543000000000001
          - type: map_at_1000
            value: 14.126
          - type: map_at_3
            value: 3.09
          - type: map_at_5
            value: 5.008
          - type: mrr_at_1
            value: 18.367
          - type: mrr_at_10
            value: 32.933
          - type: mrr_at_100
            value: 34.176
          - type: mrr_at_1000
            value: 34.176
          - type: mrr_at_3
            value: 27.551
          - type: mrr_at_5
            value: 30.714000000000002
          - type: ndcg_at_1
            value: 15.306000000000001
          - type: ndcg_at_10
            value: 18.343
          - type: ndcg_at_100
            value: 30.076000000000004
          - type: ndcg_at_1000
            value: 42.266999999999996
          - type: ndcg_at_3
            value: 17.233999999999998
          - type: ndcg_at_5
            value: 18.677
          - type: precision_at_1
            value: 18.367
          - type: precision_at_10
            value: 18.367
          - type: precision_at_100
            value: 6.837
          - type: precision_at_1000
            value: 1.467
          - type: precision_at_3
            value: 19.048000000000002
          - type: precision_at_5
            value: 21.224
          - type: recall_at_1
            value: 1.539
          - type: recall_at_10
            value: 13.289000000000001
          - type: recall_at_100
            value: 42.480000000000004
          - type: recall_at_1000
            value: 79.463
          - type: recall_at_3
            value: 4.202999999999999
          - type: recall_at_5
            value: 7.9030000000000005
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 69.2056
          - type: ap
            value: 13.564165903349778
          - type: f1
            value: 53.303385089202656
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 56.71477079796264
          - type: f1
            value: 57.01563439439609
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 39.373040570976514
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 83.44757703999524
          - type: cos_sim_ap
            value: 65.78689843625949
          - type: cos_sim_f1
            value: 62.25549384206713
          - type: cos_sim_precision
            value: 57.39091718610864
          - type: cos_sim_recall
            value: 68.02110817941951
          - type: dot_accuracy
            value: 81.3971508612982
          - type: dot_ap
            value: 58.42933051967154
          - type: dot_f1
            value: 57.85580214198962
          - type: dot_precision
            value: 49.74368710841086
          - type: dot_recall
            value: 69.12928759894459
          - type: euclidean_accuracy
            value: 83.54294569946951
          - type: euclidean_ap
            value: 66.10612585693795
          - type: euclidean_f1
            value: 62.66666666666667
          - type: euclidean_precision
            value: 58.88631090487239
          - type: euclidean_recall
            value: 66.96569920844327
          - type: manhattan_accuracy
            value: 83.43565595756095
          - type: manhattan_ap
            value: 65.88532290329134
          - type: manhattan_f1
            value: 62.58408721874276
          - type: manhattan_precision
            value: 55.836092715231786
          - type: manhattan_recall
            value: 71.18733509234828
          - type: max_accuracy
            value: 83.54294569946951
          - type: max_ap
            value: 66.10612585693795
          - type: max_f1
            value: 62.66666666666667
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.02344083517679
          - type: cos_sim_ap
            value: 84.21589190889944
          - type: cos_sim_f1
            value: 76.36723039754007
          - type: cos_sim_precision
            value: 72.79134682484299
          - type: cos_sim_recall
            value: 80.31259624268556
          - type: dot_accuracy
            value: 87.43353902278108
          - type: dot_ap
            value: 82.08962394120071
          - type: dot_f1
            value: 74.97709923664122
          - type: dot_precision
            value: 74.34150772025431
          - type: dot_recall
            value: 75.62365260240222
          - type: euclidean_accuracy
            value: 87.97686963946133
          - type: euclidean_ap
            value: 84.20578083922416
          - type: euclidean_f1
            value: 76.4299182903834
          - type: euclidean_precision
            value: 73.51874244256348
          - type: euclidean_recall
            value: 79.58115183246073
          - type: manhattan_accuracy
            value: 88.00209570380719
          - type: manhattan_ap
            value: 84.14700304263556
          - type: manhattan_f1
            value: 76.36429345861944
          - type: manhattan_precision
            value: 71.95886119057349
          - type: manhattan_recall
            value: 81.34431783184478
          - type: max_accuracy
            value: 88.02344083517679
          - type: max_ap
            value: 84.21589190889944
          - type: max_f1
            value: 76.4299182903834

bge-micro

This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is distilled from bge-small-en-v1.5, with 1/4 the non-embedding parameters. It has 1/2 the parameters of the smallest commonly-used embedding model, all-MiniLM-L6-v2, with similar performance.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors