plip's picture
Upload
9751592
|
raw
history blame
4.87 kB
metadata
language:
  - en
  - ar
  - bg
  - de
  - el
  - fr
  - hi
  - ru
  - es
  - sw
  - th
  - tr
  - ur
  - vi
  - zh
tags:
  - generated_from_trainer
datasets:
  - xnli
metrics:
  - accuracy
model-index:
  - name: pixel-base-finetuned-xnli-translate-train-all
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: XNLI
          type: xnli
          args: xnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6254886211512718

pixel-base-finetuned-xnli-translate-train-all

This model is a fine-tuned version of Team-PIXEL/pixel-base on the XNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8312
  • Accuracy: 0.6255

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 256
  • eval_batch_size: 8
  • seed: 555
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 50000
  • mixed_precision_training: Apex, opt level O1

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0422 0.04 1000 1.0647 0.4250
0.9622 0.09 2000 1.0015 0.5051
0.93 0.13 3000 0.9750 0.5285
0.9126 0.17 4000 0.9396 0.5488
0.9033 0.22 5000 0.9353 0.5603
0.8861 0.26 6000 0.9369 0.5606
0.8799 0.3 7000 0.9407 0.5575
0.8627 0.35 8000 0.9079 0.5774
0.8658 0.39 9000 0.9110 0.5711
0.8521 0.43 10000 0.8945 0.5837
0.8562 0.48 11000 0.8818 0.5871
0.8479 0.52 12000 0.8771 0.5938
0.8451 0.56 13000 0.8965 0.5844
0.8433 0.61 14000 0.8814 0.5937
0.8331 0.65 15000 0.8721 0.5983
0.8267 0.7 16000 0.8691 0.5978
0.8254 0.74 17000 0.8646 0.5999
0.8214 0.78 18000 0.8700 0.6004
0.815 0.83 19000 0.8621 0.6016
0.8145 0.87 20000 0.8482 0.6119
0.8067 0.91 21000 0.8601 0.6053
0.8063 0.96 22000 0.8535 0.6093
0.8008 1.0 23000 0.8455 0.6123
0.7863 1.04 24000 0.8524 0.6107
0.7918 1.09 25000 0.8450 0.6142
0.7746 1.13 26000 0.8531 0.6095
0.7855 1.17 27000 0.8442 0.6150
0.7903 1.22 28000 0.8386 0.6162
0.7808 1.26 29000 0.8403 0.6178
0.7847 1.3 30000 0.8421 0.6145
0.7822 1.35 31000 0.8427 0.6157
0.769 1.39 32000 0.8397 0.6187
0.7822 1.43 33000 0.8315 0.6213
0.771 1.48 34000 0.8505 0.6141
0.7713 1.52 35000 0.8482 0.6142
0.7663 1.56 36000 0.8490 0.6169
0.7653 1.61 37000 0.8295 0.6229
0.7669 1.65 38000 0.8313 0.6217
0.77 1.69 39000 0.8309 0.6234
0.763 1.74 40000 0.8310 0.6256
0.7609 1.78 41000 0.8302 0.6228
0.7627 1.83 42000 0.8242 0.6269
0.7617 1.87 43000 0.8232 0.6264
0.7636 1.91 44000 0.8265 0.6261
0.7585 1.96 45000 0.8258 0.6268
0.7572 2.0 46000 0.8223 0.6278
0.7396 2.04 47000 0.8348 0.6242
0.7344 2.09 48000 0.8299 0.6270
0.7385 2.13 49000 0.8314 0.6240
0.7275 2.17 50000 0.8312 0.6255

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0
  • Datasets 2.0.0
  • Tokenizers 0.12.1