项目介绍
本项目旨在提供更好的中文CLIP模型。该项目使用的训练数据均为公开可访问的图像URL及相关中文文本描述,总量达到400M。经过筛选后,我们最终使用了100M的数据进行训练。
本项目于QQ-ARC Joint Lab, Tencent PCG完成。
更详细的信息可以参考QA-CLIP项目的主页面。
实验结果
针对图文检索任务,我们在MUGE Retrieval、Flickr30K-CN和COCO-CN上进行了zero-shot测试。 针对图像零样本分类任务,我们在ImageNet数据集上进行了测试。测试结果见下表:
Flickr30K-CN Zero-shot Retrieval (Official Test Set):
Task | Text-to-Image | Image-to-Text | ||||
---|---|---|---|---|---|---|
Metric | R@1 | R@5 | R@10 | R@1 | R@5 | R@10 |
CN-CLIPRN50 | 48.8 | 76.0 | 84.6 | 60.0 | 85.9 | 92.0 |
QA-CLIPRN50 | 50.5 | 77.4 | 86.1 | 67.1 | 87.9 | 93.2 |
CN-CLIPViT-B/16 | 62.7 | 86.9 | 92.8 | 74.6 | 93.5 | 97.1 |
QA-CLIPViT-B/16 | 63.8 | 88.0 | 93.2 | 78.4 | 96.1 | 98.5 |
CN-CLIPViT-L/14 | 68.0 | 89.7 | 94.4 | 80.2 | 96.6 | 98.2 |
AltClipViT-L/14 | 69.7 | 90.1 | 94.8 | 84.8 | 97.7 | 99.1 |
CN-CLIPViT-L/14 | 69.3 | 90.3 | 94.7 | 85.3 | 97.9 | 99.2 |
MUGE Zero-shot Retrieval (Official Validation Set):
Task | Text-to-Image | Image-to-Text | ||||
---|---|---|---|---|---|---|
Metric | R@1 | R@5 | R@10 | R@1 | R@5 | R@10 |
CN-CLIPRN50 | 42.6 | 68.5 | 78.0 | 30.0 | 56.2 | 66.9 |
QA-CLIPRN50 | 44.0 | 69.9 | 79.5 | 32.4 | 59.5 | 70.3 |
CN-CLIPViT-B/16 | 52.1 | 76.7 | 84.4 | 38.7 | 65.6 | 75.1 |
QA-CLIPViT-B/16 | 53.2 | 77.7 | 85.1 | 40.7 | 68.2 | 77.2 |
CN-CLIPViT-L/14 | 56.4 | 79.8 | 86.2 | 42.6 | 69.8 | 78.6 |
AltClipViT-L/14 | 29.6 | 49.9 | 58.8 | 21.4 | 42.0 | 51.9 |
QA-CLIPViT-L/14 | 57.4 | 81.0 | 87.7 | 45.5 | 73.0 | 81.4 |
COCO-CN Zero-shot Retrieval (Official Test Set):
Task | Text-to-Image | Image-to-Text | ||||
---|---|---|---|---|---|---|
Metric | R@1 | R@5 | R@10 | R@1 | R@5 | R@10 |
CN-CLIPRN50 | 48.1 | 81.3 | 90.5 | 50.9 | 81.1 | 90.5 |
QA-CLIPRN50 | 50.1 | 82.5 | 91.7 | 56.7 | 85.2 | 92.9 |
CN-CLIPViT-B/16 | 62.2 | 87.1 | 94.9 | 56.3 | 84.0 | 93.3 |
QA-CLIPViT-B/16 | 62.9 | 87.7 | 94.7 | 61.5 | 87.6 | 94.8 |
CN-CLIPViT-L/14 | 64.9 | 88.8 | 94.2 | 60.6 | 84.4 | 93.1 |
AltClipViT-L/14 | 63.5 | 87.6 | 93.5 | 62.6 | 88.5 | 95.9 |
QA-CLIPViT-L/14 | 65.7 | 90.2 | 95.0 | 64.5 | 88.3 | 95.1 |
Zero-shot Image Classification on ImageNet:
Task | ImageNet |
---|---|
CN-CLIPRN50 | 33.5 |
QA-CLIPRN50 | 35.5 |
CN-CLIPViT-B/16 | 48.4 |
QA-CLIPViT-B/16 | 49.7 |
CN-CLIPViT-L/14 | 54.7 |
QA-CLIPViT-L/14 | 55.8 |
使用教程
推理代码
推理代码示例:
from PIL import Image
import requests
from transformers import ChineseCLIPProcessor, ChineseCLIPModel
model = ChineseCLIPModel.from_pretrained("TencentARC/QA-CLIP-ViT-B-16")
processor = ChineseCLIPProcessor.from_pretrained("TencentARC/QA-CLIP-ViT-B-16")
url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
# Squirtle, Bulbasaur, Charmander, Pikachu in English
texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]
# compute image feature
inputs = processor(images=image, return_tensors="pt")
image_features = model.get_image_features(**inputs)
image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True) # normalize
# compute text features
inputs = processor(text=texts, padding=True, return_tensors="pt")
text_features = model.get_text_features(**inputs)
text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True) # normalize
# compute image-text similarity scores
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1)
致谢
项目代码基于Chinese-CLIP实现,非常感谢他们优秀的开源工作。