Edit model card

中文说明 | English

Introduction

This project aims to provide a better Chinese CLIP model. The training data used in this project consists of publicly accessible image URLs and related Chinese text descriptions, totaling 400 million. After screening, we ultimately used 100 million data for training. This project is produced by QQ-ARC Joint Lab, Tencent PCG. For more detailed information, please refer to the main page of the QA-CLIP project. We have also open-sourced our code on GitHub, QA-CLIP, and welcome to star!

Results

We conducted zero-shot tests on MUGE Retrieval, Flickr30K-CN, and COCO-CN datasets for image-text retrieval tasks. For the image zero-shot classification task, we tested on the ImageNet dataset. The test results are shown in the table below:

Flickr30K-CN Zero-shot Retrieval (Official Test Set):

TaskText-to-ImageImage-to-Text
MetricR@1R@5R@10R@1R@5R@10
CN-CLIPRN5048.876.084.660.085.992.0
QA-CLIPRN5050.577.486.167.187.993.2
CN-CLIPViT-B/1662.786.992.874.693.597.1
QA-CLIPViT-B/1663.888.093.278.496.198.5
CN-CLIPViT-L/1468.089.794.480.296.698.2
AltClipViT-L/1469.790.194.884.897.799.1
QA-CLIPViT-L/1469.390.394.785.397.999.2

MUGE Zero-shot Retrieval (Official Validation Set):

TaskText-to-ImageImage-to-Text
MetricR@1R@5R@10R@1R@5R@10
CN-CLIPRN5042.668.578.030.056.266.9
QA-CLIPRN5044.069.979.532.459.570.3
CN-CLIPViT-B/1652.176.784.438.765.675.1
QA-CLIPViT-B/1653.277.785.140.768.277.2
CN-CLIPViT-L/1456.479.886.242.669.878.6
AltClipViT-L/1429.649.958.821.442.051.9
QA-CLIPViT-L/1457.481.087.745.573.081.4

COCO-CN Zero-shot Retrieval (Official Test Set):

TaskText-to-ImageImage-to-Text
MetricR@1R@5R@10R@1R@5R@10
CN-CLIPRN5048.181.390.550.981.190.5
QA-CLIPRN5050.182.591.756.785.292.9
CN-CLIPViT-B/1662.287.194.956.384.093.3
QA-CLIPViT-B/1662.987.794.761.587.694.8
CN-CLIPViT-L/1464.988.894.260.684.493.1
AltClipViT-L/1463.587.693.562.688.595.9
QA-CLIPViT-L/1465.790.295.064.588.395.1

Zero-shot Image Classification on ImageNet:

TaskImageNet
CN-CLIPRN5033.5
QA-CLIPRN5035.5
CN-CLIPViT-B/1648.4
QA-CLIPViT-B/1649.7
CN-CLIPViT-L/1454.7
QA-CLIPViT-L/1455.8



Getting Started

Inference Code

Inference code example:

from PIL import Image
import requests
from transformers import ChineseCLIPProcessor, ChineseCLIPModel

model = ChineseCLIPModel.from_pretrained("TencentARC/QA-CLIP-ViT-L-14")
processor = ChineseCLIPProcessor.from_pretrained("TencentARC/QA-CLIP-ViT-L-14")

url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
# Squirtle, Bulbasaur, Charmander, Pikachu in English
texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]

# compute image feature
inputs = processor(images=image, return_tensors="pt")
image_features = model.get_image_features(**inputs)
image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)  # normalize

# compute text features
inputs = processor(text=texts, padding=True, return_tensors="pt")
text_features = model.get_text_features(**inputs)
text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)  # normalize

# compute image-text similarity scores
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1)



Acknowledgments

The project code is based on implementation of Chinese-CLIP, and we are very grateful for their outstanding open-source contributions.

Downloads last month
30
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.