metadata
license: mit
base_model: microsoft/deberta-v3-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Classifier_30k
results: []
Classifier_30k
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1296
- Accuracy: 0.9876
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3588 | 0.9994 | 831 | 0.3084 | 0.9091 |
0.1252 | 2.0 | 1663 | 0.2260 | 0.9453 |
0.1123 | 2.9994 | 2494 | 0.1241 | 0.9604 |
0.0896 | 4.0 | 3326 | 0.1372 | 0.9655 |
0.0749 | 4.9994 | 4157 | 0.1541 | 0.9708 |
0.0743 | 6.0 | 4989 | 0.1127 | 0.9715 |
0.0596 | 6.9994 | 5820 | 0.1782 | 0.9672 |
0.0494 | 8.0 | 6652 | 0.1352 | 0.9749 |
0.0443 | 8.9994 | 7483 | 0.1232 | 0.9681 |
0.0405 | 10.0 | 8315 | 0.0756 | 0.9838 |
0.0383 | 10.9994 | 9146 | 0.2025 | 0.9600 |
0.0361 | 12.0 | 9978 | 0.1130 | 0.9796 |
0.0288 | 12.9994 | 10809 | 0.0906 | 0.9855 |
0.0249 | 14.0 | 11641 | 0.1122 | 0.9827 |
0.0222 | 14.9994 | 12472 | 0.0713 | 0.9862 |
0.0239 | 16.0 | 13304 | 0.0552 | 0.9876 |
0.0234 | 16.9994 | 14135 | 0.0728 | 0.9864 |
0.0258 | 18.0 | 14967 | 0.0558 | 0.9891 |
0.0208 | 18.9994 | 15798 | 0.0715 | 0.9879 |
0.0199 | 20.0 | 16630 | 0.0753 | 0.9885 |
0.0143 | 20.9994 | 17461 | 0.0812 | 0.9872 |
0.0255 | 22.0 | 18293 | 0.1661 | 0.9744 |
0.0156 | 22.9994 | 19124 | 0.0751 | 0.9883 |
0.013 | 24.0 | 19956 | 0.0718 | 0.9862 |
0.0126 | 24.9994 | 20787 | 0.0829 | 0.9853 |
0.0123 | 26.0 | 21619 | 0.0848 | 0.9857 |
0.0109 | 26.9994 | 22450 | 0.0913 | 0.9864 |
0.0095 | 28.0 | 23282 | 0.1607 | 0.9774 |
0.0096 | 28.9994 | 24113 | 0.0958 | 0.9853 |
0.0074 | 30.0 | 24945 | 0.1264 | 0.9857 |
0.0091 | 30.9994 | 25776 | 0.1030 | 0.9881 |
0.0096 | 32.0 | 26608 | 0.0954 | 0.9879 |
0.0074 | 32.9994 | 27439 | 0.1103 | 0.9885 |
0.0067 | 34.0 | 28271 | 0.1803 | 0.9791 |
0.0044 | 34.9994 | 29102 | 0.1597 | 0.9817 |
0.0045 | 36.0 | 29934 | 0.0878 | 0.9894 |
0.0034 | 36.9994 | 30765 | 0.1680 | 0.9806 |
0.0066 | 38.0 | 31597 | 0.1114 | 0.9870 |
0.0041 | 38.9994 | 32428 | 0.0910 | 0.9896 |
0.0043 | 40.0 | 33260 | 0.1435 | 0.9840 |
0.0037 | 40.9994 | 34091 | 0.1233 | 0.9881 |
0.0046 | 42.0 | 34923 | 0.1347 | 0.9864 |
0.0029 | 42.9994 | 35754 | 0.1134 | 0.9883 |
0.0017 | 44.0 | 36586 | 0.1125 | 0.9879 |
0.0025 | 44.9994 | 37417 | 0.1400 | 0.9859 |
0.0023 | 46.0 | 38249 | 0.1228 | 0.9879 |
0.0017 | 46.9994 | 39080 | 0.1445 | 0.9862 |
0.0011 | 48.0 | 39912 | 0.1375 | 0.9876 |
0.0013 | 48.9994 | 40743 | 0.1323 | 0.9876 |
0.0021 | 49.9699 | 41550 | 0.1296 | 0.9876 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1