Edit model card

Classifier_with_external_sets_04

This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2741
  • Accuracy: 0.9193

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 26
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9983 289 0.3540 0.8893
0.5256 2.0 579 0.3874 0.8673
0.5256 2.9983 868 0.3275 0.8991
0.378 4.0 1158 0.3244 0.9028
0.378 4.9983 1447 0.4013 0.8312
0.4029 6.0 1737 0.4052 0.8428
0.3932 6.9983 2026 0.3667 0.8801
0.3932 8.0 2316 0.3972 0.8385
0.3972 8.9983 2605 0.3983 0.8648
0.3972 10.0 2895 0.3805 0.8587
0.3734 10.9983 3184 0.3735 0.8746
0.3734 12.0 3474 0.3256 0.8893
0.3752 12.9983 3763 0.2800 0.9101
0.3169 14.0 4053 0.3071 0.8979
0.3169 14.9983 4342 0.3083 0.9052
0.312 16.0 4632 0.2894 0.9168
0.312 16.9983 4921 0.3725 0.8624
0.3162 18.0 5211 0.3163 0.8979
0.3185 18.9983 5500 0.3030 0.8991
0.3185 20.0 5790 0.3045 0.8997
0.2951 20.9983 6079 0.2944 0.9076
0.2951 22.0 6369 0.2693 0.9199
0.2916 22.9983 6658 0.2711 0.9187
0.2916 24.0 6948 0.2651 0.9211
0.2593 24.9983 7237 0.2696 0.9193
0.2646 25.9551 7514 0.2741 0.9193

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
435M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tensorride/Classifier_with_external_sets_04

Finetuned
(116)
this model