A model for translating cuneiform to english using google t5-small.
Akkadian: πΏ πΎ π πΆ π π π π πΎ π³ πΈ π π» πΊ π π³ π π π π³ π π π π· π π³ π² πΊ π π· π π² π· π¨ π π π» π π² π π π π π π π³ π¨ π΄ π π π€ π© π· π’ π‘ π» π π¨ π π π‘ π πΊ π π π πΎ π· π πΈ π© π π·' English: 'in the month kislimu the fourth day i marched to the land habhu i conquered the lands bazu sarbaliu and didualu together with the cities on the banks of the river ruru of the land mehru i brought forth their booty and possessions and brought them to my city assur' Prediction: 'in the mo nth tammuz iv i conquered the land s que and que i conquered the land s que and bi t yakin i conquered the cities f ro m the river i conquered and plundered the cities on the bo rd er of the land elam'
t5-small-p-l-akk-en-20240727-131059
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0397
- Bleu (max_length: 500): 23.8943
- Bleu (max_length: 100): 34.2329
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0533 | 0.1657 | 2500 | 0.0495 |
0.0469 | 0.3314 | 5000 | 0.0493 |
0.0516 | 0.4971 | 7500 | 0.0491 |
0.0495 | 0.6629 | 10000 | 0.0490 |
0.0531 | 0.8286 | 12500 | 0.0488 |
0.056 | 0.9943 | 15000 | 0.0487 |
0.0528 | 1.1600 | 17500 | 0.0486 |
0.0515 | 1.3257 | 20000 | 0.0484 |
0.0569 | 1.4914 | 22500 | 0.0483 |
0.0487 | 1.6572 | 25000 | 0.0481 |
0.0492 | 1.8229 | 27500 | 0.0481 |
0.0477 | 1.9886 | 30000 | 0.0478 |
0.0514 | 2.1543 | 32500 | 0.0478 |
0.0499 | 2.3200 | 35000 | 0.0477 |
0.0524 | 2.4857 | 37500 | 0.0477 |
0.0493 | 2.6515 | 40000 | 0.0475 |
0.0534 | 2.8172 | 42500 | 0.0474 |
0.053 | 2.9829 | 45000 | 0.0471 |
0.0497 | 3.1486 | 47500 | 0.0472 |
0.0451 | 3.3143 | 50000 | 0.0471 |
0.0533 | 3.4800 | 52500 | 0.0469 |
0.0476 | 3.6458 | 55000 | 0.0469 |
0.0499 | 3.8115 | 57500 | 0.0467 |
0.0524 | 3.9772 | 60000 | 0.0467 |
0.0471 | 4.1429 | 62500 | 0.0466 |
0.0495 | 4.3086 | 65000 | 0.0465 |
0.0489 | 4.4743 | 67500 | 0.0464 |
0.0462 | 4.6401 | 70000 | 0.0462 |
0.0487 | 4.8058 | 72500 | 0.0463 |
0.0506 | 4.9715 | 75000 | 0.0461 |
0.0467 | 5.1372 | 77500 | 0.0459 |
0.0448 | 5.3029 | 80000 | 0.0462 |
0.0472 | 5.4686 | 82500 | 0.0461 |
0.0522 | 5.6344 | 85000 | 0.0459 |
0.0498 | 5.8001 | 87500 | 0.0457 |
0.0512 | 5.9658 | 90000 | 0.0456 |
0.0474 | 6.1315 | 92500 | 0.0455 |
0.0517 | 6.2972 | 95000 | 0.0454 |
0.0465 | 6.4629 | 97500 | 0.0455 |
0.0468 | 6.6287 | 100000 | 0.0453 |
0.0486 | 6.7944 | 102500 | 0.0453 |
0.0469 | 6.9601 | 105000 | 0.0451 |
0.0468 | 7.1258 | 107500 | 0.0451 |
0.0486 | 7.2915 | 110000 | 0.0449 |
0.0473 | 7.4572 | 112500 | 0.0449 |
0.0487 | 7.6230 | 115000 | 0.0449 |
0.0487 | 7.7887 | 117500 | 0.0448 |
0.05 | 7.9544 | 120000 | 0.0447 |
0.049 | 8.1201 | 122500 | 0.0447 |
0.0428 | 8.2858 | 125000 | 0.0446 |
0.047 | 8.4515 | 127500 | 0.0445 |
0.0447 | 8.6173 | 130000 | 0.0443 |
0.0455 | 8.7830 | 132500 | 0.0443 |
0.0464 | 8.9487 | 135000 | 0.0443 |
0.0432 | 9.1144 | 137500 | 0.0444 |
0.0463 | 9.2801 | 140000 | 0.0442 |
0.0431 | 9.4458 | 142500 | 0.0442 |
0.0448 | 9.6116 | 145000 | 0.0441 |
0.0457 | 9.7773 | 147500 | 0.0440 |
0.0478 | 9.9430 | 150000 | 0.0439 |
0.0484 | 10.1087 | 152500 | 0.0441 |
0.0418 | 10.2744 | 155000 | 0.0439 |
0.0404 | 10.4401 | 157500 | 0.0437 |
0.0449 | 10.6059 | 160000 | 0.0436 |
0.0453 | 10.7716 | 162500 | 0.0438 |
0.0441 | 10.9373 | 165000 | 0.0435 |
0.0447 | 11.1030 | 167500 | 0.0437 |
0.0455 | 11.2687 | 170000 | 0.0436 |
0.043 | 11.4344 | 172500 | 0.0436 |
0.0429 | 11.6002 | 175000 | 0.0435 |
0.0434 | 11.7659 | 177500 | 0.0434 |
0.0452 | 11.9316 | 180000 | 0.0433 |
0.0423 | 12.0973 | 182500 | 0.0435 |
0.0482 | 12.2630 | 185000 | 0.0433 |
0.0439 | 12.4287 | 187500 | 0.0433 |
0.0408 | 12.5945 | 190000 | 0.0432 |
0.0458 | 12.7602 | 192500 | 0.0430 |
0.0429 | 12.9259 | 195000 | 0.0431 |
0.0403 | 13.0916 | 197500 | 0.0430 |
0.0451 | 13.2573 | 200000 | 0.0429 |
0.0453 | 13.4230 | 202500 | 0.0429 |
0.0437 | 13.5888 | 205000 | 0.0427 |
0.0433 | 13.7545 | 207500 | 0.0428 |
0.0462 | 13.9202 | 210000 | 0.0426 |
0.0447 | 14.0859 | 212500 | 0.0427 |
0.0454 | 14.2516 | 215000 | 0.0427 |
0.0413 | 14.4173 | 217500 | 0.0426 |
0.0416 | 14.5831 | 220000 | 0.0426 |
0.0444 | 14.7488 | 222500 | 0.0425 |
0.0465 | 14.9145 | 225000 | 0.0424 |
0.0423 | 15.0802 | 227500 | 0.0425 |
0.0473 | 15.2459 | 230000 | 0.0424 |
0.0408 | 15.4116 | 232500 | 0.0424 |
0.0442 | 15.5774 | 235000 | 0.0424 |
0.0415 | 15.7431 | 237500 | 0.0422 |
0.042 | 15.9088 | 240000 | 0.0421 |
0.0414 | 16.0745 | 242500 | 0.0422 |
0.0444 | 16.2402 | 245000 | 0.0421 |
0.0435 | 16.4059 | 247500 | 0.0421 |
0.0393 | 16.5717 | 250000 | 0.0420 |
0.0436 | 16.7374 | 252500 | 0.0421 |
0.0442 | 16.9031 | 255000 | 0.0419 |
0.0461 | 17.0688 | 257500 | 0.0420 |
0.0403 | 17.2345 | 260000 | 0.0420 |
0.044 | 17.4002 | 262500 | 0.0420 |
0.0406 | 17.5660 | 265000 | 0.0419 |
0.0422 | 17.7317 | 267500 | 0.0418 |
0.0424 | 17.8974 | 270000 | 0.0416 |
0.0415 | 18.0631 | 272500 | 0.0418 |
0.0407 | 18.2288 | 275000 | 0.0416 |
0.0401 | 18.3945 | 277500 | 0.0418 |
0.0449 | 18.5603 | 280000 | 0.0418 |
0.0405 | 18.7260 | 282500 | 0.0415 |
0.0385 | 18.8917 | 285000 | 0.0418 |
0.0405 | 19.0574 | 287500 | 0.0415 |
0.0445 | 19.2231 | 290000 | 0.0417 |
0.0429 | 19.3888 | 292500 | 0.0414 |
0.0429 | 19.5546 | 295000 | 0.0413 |
0.0464 | 19.7203 | 297500 | 0.0414 |
0.0424 | 19.8860 | 300000 | 0.0413 |
0.0417 | 20.0517 | 302500 | 0.0414 |
0.0418 | 20.2174 | 305000 | 0.0413 |
0.0406 | 20.3831 | 307500 | 0.0414 |
0.0419 | 20.5489 | 310000 | 0.0413 |
0.039 | 20.7146 | 312500 | 0.0413 |
0.0392 | 20.8803 | 315000 | 0.0411 |
0.0418 | 21.0460 | 317500 | 0.0411 |
0.0363 | 21.2117 | 320000 | 0.0411 |
0.0424 | 21.3774 | 322500 | 0.0412 |
0.0402 | 21.5432 | 325000 | 0.0413 |
0.0418 | 21.7089 | 327500 | 0.0413 |
0.0412 | 21.8746 | 330000 | 0.0410 |
0.0413 | 22.0403 | 332500 | 0.0410 |
0.0413 | 22.2060 | 335000 | 0.0411 |
0.0418 | 22.3717 | 337500 | 0.0411 |
0.0424 | 22.5375 | 340000 | 0.0411 |
0.0386 | 22.7032 | 342500 | 0.0410 |
0.0399 | 22.8689 | 345000 | 0.0408 |
0.0429 | 23.0346 | 347500 | 0.0409 |
0.0384 | 23.2003 | 350000 | 0.0409 |
0.0408 | 23.3660 | 352500 | 0.0408 |
0.0405 | 23.5318 | 355000 | 0.0407 |
0.042 | 23.6975 | 357500 | 0.0408 |
0.0404 | 23.8632 | 360000 | 0.0407 |
0.0382 | 24.0289 | 362500 | 0.0406 |
0.0393 | 24.1946 | 365000 | 0.0408 |
0.0359 | 24.3603 | 367500 | 0.0407 |
0.0412 | 24.5261 | 370000 | 0.0408 |
0.0446 | 24.6918 | 372500 | 0.0406 |
0.0377 | 24.8575 | 375000 | 0.0406 |
0.0379 | 25.0232 | 377500 | 0.0407 |
0.0389 | 25.1889 | 380000 | 0.0407 |
0.0365 | 25.3546 | 382500 | 0.0405 |
0.0441 | 25.5203 | 385000 | 0.0405 |
0.0427 | 25.6861 | 387500 | 0.0405 |
0.0393 | 25.8518 | 390000 | 0.0405 |
0.0392 | 26.0175 | 392500 | 0.0406 |
0.039 | 26.1832 | 395000 | 0.0405 |
0.0401 | 26.3489 | 397500 | 0.0405 |
0.0385 | 26.5146 | 400000 | 0.0405 |
0.0413 | 26.6804 | 402500 | 0.0406 |
0.0384 | 26.8461 | 405000 | 0.0405 |
0.0388 | 27.0118 | 407500 | 0.0405 |
0.039 | 27.1775 | 410000 | 0.0405 |
0.0385 | 27.3432 | 412500 | 0.0404 |
0.0387 | 27.5089 | 415000 | 0.0404 |
0.0426 | 27.6747 | 417500 | 0.0403 |
0.0381 | 27.8404 | 420000 | 0.0403 |
0.0423 | 28.0061 | 422500 | 0.0405 |
0.0368 | 28.1718 | 425000 | 0.0403 |
0.0405 | 28.3375 | 427500 | 0.0403 |
0.0371 | 28.5032 | 430000 | 0.0405 |
0.0393 | 28.6690 | 432500 | 0.0403 |
0.0385 | 28.8347 | 435000 | 0.0403 |
0.0399 | 29.0004 | 437500 | 0.0402 |
0.0398 | 29.1661 | 440000 | 0.0403 |
0.0364 | 29.3318 | 442500 | 0.0402 |
0.0374 | 29.4975 | 445000 | 0.0402 |
0.0401 | 29.6633 | 447500 | 0.0401 |
0.0404 | 29.8290 | 450000 | 0.0402 |
0.0391 | 29.9947 | 452500 | 0.0401 |
0.0398 | 30.1604 | 455000 | 0.0401 |
0.0387 | 30.3261 | 457500 | 0.0403 |
0.0388 | 30.4918 | 460000 | 0.0402 |
0.0392 | 30.6576 | 462500 | 0.0400 |
0.037 | 30.8233 | 465000 | 0.0400 |
0.0415 | 30.9890 | 467500 | 0.0401 |
0.0407 | 31.1547 | 470000 | 0.0401 |
0.0414 | 31.3204 | 472500 | 0.0401 |
0.0401 | 31.4861 | 475000 | 0.0400 |
0.0382 | 31.6519 | 477500 | 0.0400 |
0.0412 | 31.8176 | 480000 | 0.0399 |
0.0368 | 31.9833 | 482500 | 0.0400 |
0.0384 | 32.1490 | 485000 | 0.0401 |
0.036 | 32.3147 | 487500 | 0.0399 |
0.0387 | 32.4804 | 490000 | 0.0400 |
0.0407 | 32.6462 | 492500 | 0.0399 |
0.0377 | 32.8119 | 495000 | 0.0400 |
0.0353 | 32.9776 | 497500 | 0.0399 |
0.0401 | 33.1433 | 500000 | 0.0400 |
0.0367 | 33.3090 | 502500 | 0.0399 |
0.0376 | 33.4747 | 505000 | 0.0399 |
0.0422 | 33.6405 | 507500 | 0.0398 |
0.0405 | 33.8062 | 510000 | 0.0398 |
0.0376 | 33.9719 | 512500 | 0.0398 |
0.041 | 34.1376 | 515000 | 0.0399 |
0.0372 | 34.3033 | 517500 | 0.0400 |
0.0391 | 34.4690 | 520000 | 0.0399 |
0.0399 | 34.6348 | 522500 | 0.0399 |
0.0369 | 34.8005 | 525000 | 0.0399 |
0.0409 | 34.9662 | 527500 | 0.0398 |
0.0398 | 35.1319 | 530000 | 0.0398 |
0.0379 | 35.2976 | 532500 | 0.0399 |
0.037 | 35.4633 | 535000 | 0.0399 |
0.0391 | 35.6291 | 537500 | 0.0398 |
0.0437 | 35.7948 | 540000 | 0.0399 |
0.0393 | 35.9605 | 542500 | 0.0397 |
0.0395 | 36.1262 | 545000 | 0.0398 |
0.0414 | 36.2919 | 547500 | 0.0399 |
0.0379 | 36.4576 | 550000 | 0.0398 |
0.0366 | 36.6234 | 552500 | 0.0398 |
0.0394 | 36.7891 | 555000 | 0.0398 |
0.0413 | 36.9548 | 557500 | 0.0398 |
0.0397 | 37.1205 | 560000 | 0.0398 |
0.0367 | 37.2862 | 562500 | 0.0397 |
0.0413 | 37.4519 | 565000 | 0.0397 |
0.0427 | 37.6177 | 567500 | 0.0398 |
0.0383 | 37.7834 | 570000 | 0.0397 |
0.036 | 37.9491 | 572500 | 0.0397 |
0.0389 | 38.1148 | 575000 | 0.0397 |
0.0395 | 38.2805 | 577500 | 0.0397 |
0.0391 | 38.4462 | 580000 | 0.0398 |
0.0388 | 38.6120 | 582500 | 0.0398 |
0.0412 | 38.7777 | 585000 | 0.0397 |
0.036 | 38.9434 | 587500 | 0.0398 |
0.0398 | 39.1091 | 590000 | 0.0398 |
0.0373 | 39.2748 | 592500 | 0.0397 |
0.0391 | 39.4405 | 595000 | 0.0397 |
0.0375 | 39.6063 | 597500 | 0.0398 |
0.0404 | 39.7720 | 600000 | 0.0398 |
0.0369 | 39.9377 | 602500 | 0.0397 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 4