TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
NexusRaven V2 13B - GPTQ
- Model creator: Nexusflow
- Original model: NexusRaven V2 13B
Description
This repo contains GPTQ model files for Nexusflow's NexusRaven V2 13B.
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
These files were quantised using hardware kindly provided by Massed Compute.
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- Nexusflow's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: NexusRaven
Function:
def function_here(arg1):
"""
Comments explaining the function here
Args:
list args
Returns:
list returns
"""
Function:
def another_function_here(arg1):
...
User Query: {prompt}<human_end>
Licensing
The creator of the source model has listed its license as other
, and this quantization has therefore used that same license.
As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: Nexusflow's NexusRaven V2 13B.
Known compatible clients / servers
GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
These GPTQ models are known to work in the following inference servers/webuis.
This may not be a complete list; if you know of others, please let me know!
Provided files, and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
Explanation of GPTQ parameters
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as
desc_act
. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
---|---|---|---|---|---|---|---|---|---|
main | 4 | 128 | Yes | 0.1 | Evol Instruct Code | 8192 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
gptq-4bit-32g-actorder_True | 4 | 32 | Yes | 0.1 | Evol Instruct Code | 8192 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
gptq-8bit--1g-actorder_True | 8 | None | Yes | 0.1 | Evol Instruct Code | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
gptq-8bit-128g-actorder_True | 8 | 128 | Yes | 0.1 | Evol Instruct Code | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
gptq-8bit-32g-actorder_True | 8 | 32 | Yes | 0.1 | Evol Instruct Code | 8192 | 14.55 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
gptq-4bit-64g-actorder_True | 4 | 64 | Yes | 0.1 | Evol Instruct Code | 8192 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
How to download, including from branches
In text-generation-webui
To download from the main
branch, enter TheBloke/NexusRaven-V2-13B-GPTQ
in the "Download model" box.
To download from another branch, add :branchname
to the end of the download name, eg TheBloke/NexusRaven-V2-13B-GPTQ:gptq-4bit-32g-actorder_True
From the command line
I recommend using the huggingface-hub
Python library:
pip3 install huggingface-hub
To download the main
branch to a folder called NexusRaven-V2-13B-GPTQ
:
mkdir NexusRaven-V2-13B-GPTQ
huggingface-cli download TheBloke/NexusRaven-V2-13B-GPTQ --local-dir NexusRaven-V2-13B-GPTQ --local-dir-use-symlinks False
To download from a different branch, add the --revision
parameter:
mkdir NexusRaven-V2-13B-GPTQ
huggingface-cli download TheBloke/NexusRaven-V2-13B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir NexusRaven-V2-13B-GPTQ --local-dir-use-symlinks False
More advanced huggingface-cli download usage
If you remove the --local-dir-use-symlinks False
parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: ~/.cache/huggingface
), and symlinks will be added to the specified --local-dir
, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
The cache location can be changed with the HF_HOME
environment variable, and/or the --cache-dir
parameter to huggingface-cli
.
For more documentation on downloading with huggingface-cli
, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.
To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer
:
pip3 install hf_transfer
And set environment variable HF_HUB_ENABLE_HF_TRANSFER
to 1
:
mkdir NexusRaven-V2-13B-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/NexusRaven-V2-13B-GPTQ --local-dir NexusRaven-V2-13B-GPTQ --local-dir-use-symlinks False
Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1
before the download command.
With git
(not recommended)
To clone a specific branch with git
, use a command like this:
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/NexusRaven-V2-13B-GPTQ
Note that using Git with HF repos is strongly discouraged. It will be much slower than using huggingface-hub
, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the .git
folder as a blob.)
How to easily download and use this model in text-generation-webui
Please make sure you're using the latest version of text-generation-webui.
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
Click the Model tab.
Under Download custom model or LoRA, enter
TheBloke/NexusRaven-V2-13B-GPTQ
.- To download from a specific branch, enter for example
TheBloke/NexusRaven-V2-13B-GPTQ:gptq-4bit-32g-actorder_True
- see Provided Files above for the list of branches for each option.
- To download from a specific branch, enter for example
Click Download.
The model will start downloading. Once it's finished it will say "Done".
In the top left, click the refresh icon next to Model.
In the Model dropdown, choose the model you just downloaded:
NexusRaven-V2-13B-GPTQ
The model will automatically load, and is now ready for use!
If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file
quantize_config.json
.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file
Once you're ready, click the Text Generation tab and enter a prompt to get started!
Serving this model from Text Generation Inference (TGI)
It's recommended to use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0
Example Docker parameters:
--model-id TheBloke/NexusRaven-V2-13B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
pip3 install huggingface-hub
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''Function:
def function_here(arg1):
"""
Comments explaining the function here
Args:
list args
Returns:
list returns
"""
Function:
def another_function_here(arg1):
...
User Query: {prompt}<human_end>
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: {response}")
Python code example: inference from this GPTQ model
Install the necessary packages
Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
pip3 install --upgrade transformers optimum
# If using PyTorch 2.1 + CUDA 12.x:
pip3 install --upgrade auto-gptq
# or, if using PyTorch 2.1 + CUDA 11.x:
pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.5.1
pip3 install .
Example Python code
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "TheBloke/NexusRaven-V2-13B-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=False,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Tell me about AI"
prompt_template=f'''Function:
def function_here(arg1):
"""
Comments explaining the function here
Args:
list args
Returns:
list returns
"""
Function:
def another_function_here(arg1):
...
User Query: {prompt}<human_end>
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
Compatibility
The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
ExLlama is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
For a list of clients/servers, please see "Known compatible clients / servers", above.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Michael Levine, 闃挎槑, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bj盲reholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: Nexusflow's NexusRaven V2 13B
NexusRaven-13B: Surpassing GPT-4 for Zero-shot Function Calling
Nexusflow HF - Nexusflow Discord - NexusRaven-V2 blog post - Prompting Notebook CoLab - Leaderboard - Read-World Demo - NexusRaven-V2-13B Github
Introducing NexusRaven-V2-13B
NexusRaven is an open-source and commercially viable function calling LLM that surpasses the state-of-the-art in function calling capabilities.
馃挭 Versatile Function Calling Capability: NexusRaven-V2 is capable of generating single function calls, nested calls, and parallel calls in many challenging cases.
馃 Fully Explainable: NexusRaven-V2 is capable of generating very detailed explanations for the function calls it generates. This behavior can be turned off, to save tokens during inference.
馃搳 Performance Highlights: NexusRaven-V2 surpasses GPT-4 by 7% in function calling success rates in human-generated use cases involving nested and composite functions.
馃敡 Generalization to the Unseen: NexusRaven-V2 has never been trained on the functions used in evaluation.
馃敟 Commercially Permissive: The training of NexusRaven-V2 does not involve any data generated by proprietary LLMs such as GPT-4. You have full control of the model when deployed in commercial applications.
Please checkout the following links!
NexusRaven-V2 model usage
NexusRaven-V2 accepts a list of python functions. These python functions can do anything (including sending GET/POST requests to external APIs!). The two requirements include the python function signature and the appropriate docstring to generate the function call.
NexusRaven-V2's Capabilities
NexusRaven-V2 is capable of generating deeply nested function calls, parallel function calls, and simple single calls. It can also justify the function calls it generated. If you would like to generate the call only, please set a stop criteria of "<bot_end>". Otherwise, please allow NexusRaven-V2 to run until its stop token (i.e. "</s>").
Quick Start Prompting Guide
Please refer to our notebook, How-To-Prompt.ipynb, for more advanced tutorials on using NexusRaven-V2!
- We strongly recommend to set sampling to False when prompting NexusRaven-V2.
- We strongly recommend a very low temperature (~0.001).
- We strongly recommend following the prompting style below.
Quickstart
You can run the model on a GPU using the following code.
# Please `pip install transformers accelerate`
from transformers import pipeline
pipeline = pipeline(
"text-generation",
model="Nexusflow/NexusRaven-V2-13B",
torch_dtype="auto",
device_map="auto",
)
prompt_template = \
'''
Function:
def get_weather_data(coordinates):
"""
Fetches weather data from the Open-Meteo API for the given latitude and longitude.
Args:
coordinates (tuple): The latitude of the location.
Returns:
float: The current temperature in the coordinates you've asked for
"""
Function:
def get_coordinates_from_city(city_name):
"""
Fetches the latitude and longitude of a given city name using the Maps.co Geocoding API.
Args:
city_name (str): The name of the city.
Returns:
tuple: The latitude and longitude of the city.
"""
User Query: {query}<human_end>
'''
prompt = prompt_template.format(query="What's the weather like in Seattle right now?")
result = pipeline(prompt, max_new_tokens=2048, return_full_text=False, do_sample=False, temperature=0.001)[0]["generated_text"]
print (result)
This should generate the following:
Call: get_weather_data(coordinates=get_coordinates_from_city(city_name='Seattle'))<bot_end>
Thought: The function call `get_weather_data(coordinates=get_coordinates_from_city(city_name='Seattle'))` answers the question "What's the weather like in Seattle right now?" by following these steps:
1. `get_coordinates_from_city(city_name='Seattle')`: This function call fetches the latitude and longitude of the city "Seattle" using the Maps.co Geocoding API.
2. `get_weather_data(coordinates=...)`: This function call fetches the current weather data for the coordinates returned by the previous function call.
Therefore, the function call `get_weather_data(coordinates=get_coordinates_from_city(city_name='Seattle'))` answers the question "What's the weather like in Seattle right now?" by first fetching the coordinates of the city "Seattle" and then fetching the current weather data for those coordinates.
If you would like to prevent the generation of the explanation of the function call (for example, to save on inference tokens), please set a stopping criteria of <bot_end>.
Please follow this prompting template to maximize the performance of RavenV2.
Using with OpenAI FC Schematics
Evaluation
For a deeper dive into the results, please see our Github README.
Limitations
- The model works best when it is connected with a retriever when there are a multitude of functions, as a large number of functions will saturate the context window of this model.
- The model can be prone to generate incorrect calls. Please ensure proper guardrails to capture errant behavior is in place.
- The explanations generated by NexusRaven-V2 might be incorrect. Please ensure proper guardrails are present to capture errant behavior.
License
This model was trained on commercially viable data and is licensed under the Nexusflow community license.
References
We thank the CodeLlama team for their amazing models!
@misc{rozi猫re2023code,
title={Code Llama: Open Foundation Models for Code},
author={Baptiste Rozi猫re and Jonas Gehring and Fabian Gloeckle and Sten Sootla and Itai Gat and Xiaoqing Ellen Tan and Yossi Adi and Jingyu Liu and Tal Remez and J茅r茅my Rapin and Artyom Kozhevnikov and Ivan Evtimov and Joanna Bitton and Manish Bhatt and Cristian Canton Ferrer and Aaron Grattafiori and Wenhan Xiong and Alexandre D茅fossez and Jade Copet and Faisal Azhar and Hugo Touvron and Louis Martin and Nicolas Usunier and Thomas Scialom and Gabriel Synnaeve},
year={2023},
eprint={2308.12950},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Citation
@misc{nexusraven,
title={NexusRaven-V2: Surpassing GPT-4 for Zero-shot Function Calling},
author={Nexusflow.ai team},
year={2023},
url={https://nexusflow.ai/blogs/ravenv2}
}
Contact
Please join our Discord Channel to reach out for any issues and comments!
- Downloads last month
- 42
Model tree for TheBloke/NexusRaven-V2-13B-GPTQ
Base model
codellama/CodeLlama-13b-Instruct-hf