Edit model card
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


OpenChat v3.2 - GPTQ

Description

This repo contains GPTQ model files for OpenChat's OpenChat v3.2.

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

Repositories available

Prompt template: OpenChat

GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:

Provided files

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch. See below for instructions on fetching from different branches.

Branch Bits Group Size Act Order (desc_act) GPTQ Dataset Size ExLlama Compat? Made With Desc
main 4 128 No wikitext 7.26 GB Yes AutoGPTQ Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options.
gptq-4bit-32g-actorder_True 4 32 Yes wikitext 8.00 GB Yes AutoGPTQ 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed.
gptq-4bit-64g-actorder_True 4 64 Yes wikitext 7.51 GB Yes AutoGPTQ 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed.
gptq-4bit-128g-actorder_True 4 128 Yes wikitext 7.26 GB Yes AutoGPTQ 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed.
gptq-8bit--1g-actorder_True 8 None Yes wikitext 13.36 GB No AutoGPTQ 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed.
gptq-8bit-128g-actorder_False 8 128 No wikitext 13.65 GB No AutoGPTQ 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed.
gptq-8bit-128g-actorder_True 8 128 Yes wikitext 13.65 GB No AutoGPTQ 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed.
gptq-8bit-64g-actorder_True 8 64 Yes wikitext 13.95 GB No AutoGPTQ 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed.

How to download from branches

  • In text-generation-webui, you can add :branch to the end of the download name, eg TheBloke/OpenChat_v3.2-GPTQ:gptq-4bit-32g-actorder_True
  • With Git, you can clone a branch with:
git clone --branch --single-branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/OpenChat_v3.2-GPTQ
  • In Python Transformers code, the branch is the revision parameter; see below.

How to easily download and use this model in text-generation-webui.

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/OpenChat_v3.2-GPTQ.
  • To download from a specific branch, enter for example TheBloke/OpenChat_v3.2-GPTQ:gptq-4bit-32g-actorder_True
  • see Provided Files above for the list of branches for each option.
  1. Click Download.
  2. The model will start downloading. Once it's finished it will say "Done"
  3. In the top left, click the refresh icon next to Model.
  4. In the Model dropdown, choose the model you just downloaded: OpenChat_v3.2-GPTQ
  5. The model will automatically load, and is now ready for use!
  6. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  • Note that you do not need to set GPTQ parameters any more. These are set automatically from the file quantize_config.json.
  1. Once you're ready, click the Text Generation tab and enter a prompt to get started!

How to use this GPTQ model from Python code

First make sure you have AutoGPTQ installed:

GITHUB_ACTIONS=true pip install auto-gptq

Then try the following example code:

from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig

model_name_or_path = "TheBloke/OpenChat_v3.2-GPTQ"
model_basename = "model"

use_triton = False

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        model_basename=model_basename,
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        use_triton=use_triton,
        quantize_config=None)

"""
To download from a specific branch, use the revision parameter, as in this example:

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        revision="gptq-4bit-32g-actorder_True",
        model_basename=model_basename,
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        quantize_config=None)
"""

prompt = "Tell me about AI"
prompt_template=f'''GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.95,
    repetition_penalty=1.15
)

print(pipe(prompt_template)[0]['generated_text'])

Compatibility

The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.

ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: OpenChat's OpenChat v3.2

OpenChat: Advancing Open-source Language Models with Imperfect Data

OpenChat is a series of open-source language models based on supervised fine-tuning (SFT). We leverage the ~80k ShareGPT conversations with a conditioning strategy and weighted loss to achieve remarkable performance despite our simple methods. Our final vision is to develop a high-performance, open-source, and commercially available large language model, and we are continuously making progress.

🔥 Rank #1 of 13B open-source models | 89.5% win-rate on AlpacaEval | 7.01 score on MT-bench

💲 FREE for commercial use under Llama 2 Community License

🕒 Super efficient padding-free finetuning for applications, only 10 hours on 8xA100 80G

Usage

To use these models, we highly recommend installing the OpenChat package by following the installation guide and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using vLLM and can run on a GPU with at least 48GB RAM or two consumer GPUs with tensor parallelism. To enable tensor parallelism, append --tensor-parallel-size 2 to the serving command.

When started, the server listens at localhost:18888 for requests and is compatible with the OpenAI ChatCompletion API specifications. See the example request below for reference. Additionally, you can access the OpenChat Web UI for a user-friendly experience.

To deploy the server as an online service, use --api-keys sk-KEY1 sk-KEY2 ... to specify allowed API keys and --disable-log-requests --disable-log-stats --log-file openchat.log for logging only to a file. We recommend using a HTTPS gateway in front of the server for security purposes.

Note: If IPv6 address errors occur, which is a vLLM issue, please run export NCCL_IGNORE_DISABLED_P2P=1 before starting the server.

Example request (click to expand)
curl http://localhost:18888/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openchat_v3.2",
    "messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
  }'
Model Size Context Weights Serving
OpenChat 3.2 13B 4096 Huggingface python -m ochat.serving.openai_api_server --model-type openchat_v3.2 --model openchat/openchat_v3.2 --engine-use-ray --worker-use-ray --max-num-batched-tokens 5120
OpenChat 3.1 13B 4096 Huggingface python -m ochat.serving.openai_api_server --model-type openchat_v3.1_llama2 --model openchat/openchat_v3.1 --engine-use-ray --worker-use-ray --max-num-batched-tokens 5120

For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below:

Conversation templates (click to expand)

V3.2

# Single-turn V3.2
tokenize("GPT4 User: Hello<|end_of_turn|>GPT4 Assistant:")
# Result: [1, 402, 7982, 29946, 4911, 29901, 15043, 32000, 402, 7982, 29946, 4007, 22137, 29901]

# Multi-turn V3.2
tokenize("GPT4 User: Hello<|end_of_turn|>GPT4 Assistant: Hi<|end_of_turn|>GPT4 User: How are you today?<|end_of_turn|>GPT4 Assistant:")
# Result: [1, 402, 7982, 29946, 4911, 29901, 15043, 32000, 402, 7982, 29946, 4007, 22137, 29901, 6324, 32000, 402, 7982, 29946, 4911, 29901, 1128, 526, 366, 9826, 29973, 32000, 402, 7982, 29946, 4007, 22137, 29901]

V3.1

# Single-turn V3.1
tokenize("Assistant is GPT4<|end_of_turn|>User: Hello<|end_of_turn|>Assistant:")
# Result: [1, 4007, 22137, 338, 402, 7982, 29946, 32000, 4911, 29901, 15043, 32000, 4007, 22137, 29901]

# Multi-turn V3.1
tokenize("Assistant is GPT4<|end_of_turn|>User: Hello<|end_of_turn|>Assistant: Hi<|end_of_turn|>User: How are you today?<|end_of_turn|>Assistant:")
# Result: [1, 4007, 22137, 338, 402, 7982, 29946, 32000, 4911, 29901, 15043, 32000, 4007, 22137, 29901, 6324, 32000, 4911, 29901, 1128, 526, 366, 9826, 29973, 32000, 4007, 22137, 29901]

Benchmarks

We have evaluated our models using the two most popular evaluation benchmarks **, including AlpacaEval and MT-bench. Here we list the top models with our released versions, sorted by model size in descending order. The full version can be found on the MT-bench and AlpacaEval leaderboards.

To ensure consistency, we used the same routine as ChatGPT / GPT-4 to run these benchmarks. We started the OpenAI API-compatible server and set the openai.api_base to http://localhost:18888/v1 in the benchmark program.

Model Size Context 💲Free AlpacaEval (win rate %) MT-bench (win rate adjusted %) MT-bench (score)
v.s. text-davinci-003 v.s. ChatGPT
GPT-4 1.8T* 8K 95.3 82.5 8.99
ChatGPT 175B* 4K 89.4 50.0 7.94
Llama-2-70B-Chat 70B 4K 92.7 6.86
OpenChat 3.2 13B 4K 89.1 51.6 7.01
OpenChat 3.1 13B 4K 89.5 50.0 6.65
Llama-2-13B-Chat 13B 4K 81.0 6.65
Vicuna 1.3 13B 2K 82.1 37.5 6.00

*: Estimated model size

**: The benchmark metrics represent a quantified measure of a subset of the model's capabilities. A win-rate greater than 50% does not necessarily indicate that the model is better than ChatGPT in all scenarios or for all use cases. It is essential to consider the specific tasks or applications for which the model was evaluated and compare the results accordingly.

Limitations

Foundation Model Limitations Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:

  • Complex reasoning
  • Mathematical and arithmetic tasks
  • Programming and coding challenges

Hallucination of Non-existent Information OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.

License

Our OpenChat V3 models are licensed under the Llama 2 Community License.

Downloads last month
12
Safetensors
Model size
2.03B params
Tensor type
F32
·
I32
·
BF16
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/OpenChat_v3.2-GPTQ

Quantized
(1)
this model