Qwen-14B-Chat-GPTQ / README.md
TheBloke's picture
Upload README.md
ec18dbe
metadata
base_model: Qwen/Qwen-14B-Chat
inference: false
language:
  - zh
  - en
model_creator: Qwen
model_name: Qwen 14B Chat
model_type: qwen
pipeline_tag: text-generation
prompt_template: |
  {prompt}
quantized_by: TheBloke
tags:
  - qwen
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Qwen 14B Chat - GPTQ

Description

This repo contains GPTQ model files for Qwen's Qwen 14B Chat.

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

These files were quantised using hardware kindly provided by Massed Compute.

Repositories available

Prompt template: Unknown

{prompt}

Known compatible clients / servers

These GPTQ models are known to work in the following inference servers/webuis.

This may not be a complete list; if you know of others, please let me know!

Provided files, and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch. See below for instructions on fetching from different branches.

Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.

Explanation of GPTQ parameters
  • Bits: The bit size of the quantised model.
  • GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
  • Act Order: True or False. Also known as desc_act. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
  • Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
  • GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
  • Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
  • ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
Branch Bits GS Act Order Damp % GPTQ Dataset Seq Len Size ExLlama Desc
main 4 128 Yes 0.1 wikitext 8192 9.68 GB No 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy.
gptq-4bit-32g-actorder_True 4 32 Yes 0.1 wikitext 8192 8.86 GB No 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage.
gptq-8bit--1g-actorder_True 8 None Yes 0.1 wikitext 8192 9.94 GB No 8-bit, with Act Order. No group size, to lower VRAM requirements.
gptq-8bit-128g-actorder_True 8 128 Yes 0.1 wikitext 8192 9.95 GB No 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy.
gptq-8bit-32g-actorder_True 8 32 Yes 0.1 wikitext 8192 9.95 GB No 8-bit, with group size 32g and Act Order for maximum inference quality.
gptq-4bit-64g-actorder_True 4 64 Yes 0.1 wikitext 8192 9.92 GB No 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy.

How to download, including from branches

In text-generation-webui

To download from the main branch, enter TheBloke/Qwen-14B-Chat-GPTQ in the "Download model" box.

To download from another branch, add :branchname to the end of the download name, eg TheBloke/Qwen-14B-Chat-GPTQ:gptq-4bit-32g-actorder_True

From the command line

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

To download the main branch to a folder called Qwen-14B-Chat-GPTQ:

mkdir Qwen-14B-Chat-GPTQ
huggingface-cli download TheBloke/Qwen-14B-Chat-GPTQ --local-dir Qwen-14B-Chat-GPTQ --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

mkdir Qwen-14B-Chat-GPTQ
huggingface-cli download TheBloke/Qwen-14B-Chat-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir Qwen-14B-Chat-GPTQ --local-dir-use-symlinks False
More advanced huggingface-cli download usage

If you remove the --local-dir-use-symlinks False parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: ~/.cache/huggingface), and symlinks will be added to the specified --local-dir, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.

The cache location can be changed with the HF_HOME environment variable, and/or the --cache-dir parameter to huggingface-cli.

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

mkdir Qwen-14B-Chat-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Qwen-14B-Chat-GPTQ --local-dir Qwen-14B-Chat-GPTQ --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

With git (not recommended)

To clone a specific branch with git, use a command like this:

git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Qwen-14B-Chat-GPTQ

Note that using Git with HF repos is strongly discouraged. It will be much slower than using huggingface-hub, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the .git folder as a blob.)

How to easily download and use this model in text-generation-webui

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

  1. Click the Model tab.

  2. Under Download custom model or LoRA, enter TheBloke/Qwen-14B-Chat-GPTQ.

    • To download from a specific branch, enter for example TheBloke/Qwen-14B-Chat-GPTQ:gptq-4bit-32g-actorder_True
    • see Provided Files above for the list of branches for each option.
  3. Click Download.

  4. The model will start downloading. Once it's finished it will say "Done".

  5. In the top left, click the refresh icon next to Model.

  6. In the Model dropdown, choose the model you just downloaded: Qwen-14B-Chat-GPTQ

  7. The model will automatically load, and is now ready for use!

  8. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.

    • Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file quantize_config.json.
  9. Once you're ready, click the Text Generation tab and enter a prompt to get started!

Serving this model from Text Generation Inference (TGI)

It's recommended to use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0

Example Docker parameters:

--model-id TheBloke/Qwen-14B-Chat-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096

Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):

pip3 install huggingface-hub
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''{prompt}
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: {response}")

How to use this GPTQ model from Python code

Install the necessary packages

Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

pip3 install transformers optimum
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/  # Use cu117 if on CUDA 11.7

If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:

pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.4.2
pip3 install .

You can then use the following code

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/Qwen-14B-Chat-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=True,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Tell me about AI"
prompt_template=f'''{prompt}
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])

Compatibility

The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.

ExLlama is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.

For a list of clients/servers, please see "Known compatible clients / servers", above.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Qwen's Qwen 14B Chat

Qwen-14B-Chat


🤗 Hugging Face   |   🤖 ModelScope   |    📑 Paper   |   🖥️ Demo
WeChat (微信)   |    DingTalk (钉钉)    |   Discord  



介绍(Introduction)

通义千问-14B(Qwen-14B)是阿里云研发的通义千问大模型系列的140亿参数规模的模型。Qwen-14B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-14B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-14B-Chat。本仓库为Qwen-14B-Chat的仓库。

如果您想了解更多关于通义千问-14B开源模型的细节,我们建议您参阅GitHub代码库

Qwen-14B is the 14B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-14B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-14B, we release Qwen-14B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. This repository is the one for Qwen-14B-Chat.

For more details about the open-source model of Qwen-14B, please refer to the GitHub code repository.

要求(Requirements)

  • python 3.8及以上版本
  • pytorch 1.12及以上版本,推荐2.0及以上版本
  • 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
  • python 3.8 and above
  • pytorch 1.12 and above, 2.0 and above are recommended
  • CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)

依赖项(Dependency)

运行Qwen-14B-Chat,请确保满足上述要求,再执行以下pip命令安装依赖库

To run Qwen-14B-Chat, please make sure you meet the above requirements, and then execute the following pip commands to install the dependent libraries.

pip install transformers==4.32.0 accelerate tiktoken einops scipy transformers_stream_generator==0.0.4 peft deepspeed

另外,推荐安装flash-attention库(当前已支持flash attention 2),以实现更高的效率和更低的显存占用。

In addition, it is recommended to install the flash-attention library (we support flash attention 2 now.) for higher efficiency and lower memory usage.

git clone https://github.com/Dao-AILab/flash-attention
cd flash-attention && pip install .
# 下方安装可选,安装可能比较缓慢。
# pip install csrc/layer_norm
# pip install csrc/rotary

快速使用(Quickstart)

下面我们展示了一个使用Qwen-14B-Chat模型,进行多轮对话交互的样例:

We show an example of multi-turn interaction with Qwen-14B-Chat in the following code:

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig

# Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-14B-Chat", trust_remote_code=True)

# use bf16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
# use fp16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
# use cpu only
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat", device_map="cpu", trust_remote_code=True).eval()
# use auto mode, automatically select precision based on the device.
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat", device_map="auto", trust_remote_code=True).eval()

# Specify hyperparameters for generation. But if you use transformers>=4.32.0, there is no need to do this.
# model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-14B-Chat", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参

# 第一轮对话 1st dialogue turn
response, history = model.chat(tokenizer, "你好", history=None)
print(response)
# 你好!很高兴为你提供帮助。

# 第二轮对话 2nd dialogue turn
response, history = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", history=history)
print(response)
# 这是一个关于一个年轻人奋斗创业最终取得成功的故事。
# 故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。从小,李明就立下了一个目标:要成为一名成功的企业家。
# 为了实现这个目标,李明勤奋学习,考上了大学。在大学期间,他积极参加各种创业比赛,获得了不少奖项。他还利用课余时间去实习,积累了宝贵的经验。
# 毕业后,李明决定开始自己的创业之路。他开始寻找投资机会,但多次都被拒绝了。然而,他并没有放弃。他继续努力,不断改进自己的创业计划,并寻找新的投资机会。
# 最终,李明成功地获得了一笔投资,开始了自己的创业之路。他成立了一家科技公司,专注于开发新型软件。在他的领导下,公司迅速发展起来,成为了一家成功的科技企业。
# 李明的成功并不是偶然的。他勤奋、坚韧、勇于冒险,不断学习和改进自己。他的成功也证明了,只要努力奋斗,任何人都有可能取得成功。

# 第三轮对话 3rd dialogue turn
response, history = model.chat(tokenizer, "给这个故事起一个标题", history=history)
print(response)
# 《奋斗创业:一个年轻人的成功之路》

关于更多的使用说明,请参考我们的GitHub repo获取更多信息。

For more information, please refer to our GitHub repo for more information.

量化 (Quantization)

用法 (Usage)

请注意:我们更新量化方案为基于AutoGPTQ的量化,提供Qwen-14B-Chat的Int4量化模型点击这里。相比此前方案,该方案在模型评测效果几乎无损,且存储需求更低,推理速度更优。

Note: we provide a new solution based on AutoGPTQ, and release an Int4 quantized model for Qwen-14B-Chat Click here, which achieves nearly lossless model effects but improved performance on both memory costs and inference speed, in comparison with the previous solution.

以下我们提供示例说明如何使用Int4量化模型。在开始使用前,请先保证满足要求(如torch 2.0及以上,transformers版本为4.32.0及以上,等等),并安装所需安装包:

Here we demonstrate how to use our provided quantized models for inference. Before you start, make sure you meet the requirements of auto-gptq (e.g., torch 2.0 and above, transformers 4.32.0 and above, etc.) and install the required packages:

pip install auto-gptq optimum

如安装auto-gptq遇到问题,我们建议您到官方repo搜索合适的预编译wheel。

随后即可使用和上述一致的用法调用量化模型:

If you meet problems installing auto-gptq, we advise you to check out the official repo to find a pre-build wheel.

Then you can load the quantized model easily and run inference as same as usual:

model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen-14B-Chat-Int4",
    device_map="auto",
    trust_remote_code=True
).eval()
response, history = model.chat(tokenizer, "你好", history=None)

效果评测

我们对BF16,Int8和Int4模型在基准评测上做了测试(使用zero-shot设置),发现量化模型效果损失较小,结果如下所示:

We illustrate the zero-shot performance of both BF16, Int8 and Int4 models on the benchmark, and we find that the quantized model does not suffer from significant performance degradation. Results are shown below:

Quantization MMLU CEval (val) GSM8K Humaneval
BF16 64.6 69.8 60.1 43.9
Int8 63.6 68.6 60.0 48.2
Int4 63.3 69.0 59.8 45.7

推理速度 (Inference Speed)

我们测算了不同精度模型以及不同FlashAttn库版本下模型生成2048和8192个token的平均推理速度。如图所示:

We measured the average inference speed of generating 2048 and 8192 tokens with different quantization levels and versions of flash-attention, respectively.

Quantization FlashAttn Speed (2048 tokens) Speed (8192 tokens)
BF16 v2 32.88 24.87
Int8 v2 29.28 24.22
Int4 v2 38.72 27.33
BF16 v1 32.76 28.89
Int8 v1 28.31 23.87
Int4 v1 37.81 26.46
BF16 Disabled 29.32 22.91
Int8 Disabled 31.12 24.60
Int4 Disabled 37.65 26.00

具体而言,我们记录在长度为1的上下文的条件下生成8192个token的性能。评测运行于单张A100-SXM4-80G GPU,使用PyTorch 2.0.1和CUDA 11.8。推理速度是生成8192个token的速度均值。

In detail, the setting of profiling is generating 8192 new tokens with 1 context token. The profiling runs on a single A100-SXM4-80G GPU with PyTorch 2.0.1 and CUDA 11.8. The inference speed is averaged over the generated 8192 tokens.

注意:以上Int4/Int8模型生成速度使用autogptq库给出,当前AutoModelForCausalLM.from_pretrained载入的模型生成速度会慢大约20%。我们已经将该问题汇报给HuggingFace团队,若有解决方案将即时更新。

Note: The generation speed of the Int4/Int8 models mentioned above is provided by the autogptq library. The current speed of the model loaded using "AutoModelForCausalLM.from_pretrained" will be approximately 20% slower. We have reported this issue to the HuggingFace team and will update it promptly if a solution is available.

显存使用 (GPU Memory Usage)

我们还测算了不同模型精度编码2048个token及生成8192个token的峰值显存占用情况。(显存消耗在是否使用FlashAttn的情况下均类似。)结果如下所示:

We also profile the peak GPU memory usage for encoding 2048 tokens as context (and generating single token) and generating 8192 tokens (with single token as context) under different quantization levels, respectively. (The GPU memory usage is similar when using flash-attention or not.)The results are shown below.

Quantization Level Peak Usage for Encoding 2048 Tokens Peak Usage for Generating 8192 Tokens
BF16 30.15GB 38.94GB
Int8 18.81GB 27.54GB
Int4 13.01GB 21.79GB

上述性能测算使用此脚本完成。

The above speed and memory profiling are conducted using this script.

模型细节(Model)

与Qwen-14B预训练模型相同,Qwen-14B-Chat模型规模基本情况如下所示

The details of the model architecture of Qwen-14B-Chat are listed as follows

Hyperparameter Value
n_layers 40
n_heads 40
d_model 5120
vocab size 151851
sequence length 2048

在位置编码、FFN激活函数和normalization的实现方式上,我们也采用了目前最流行的做法, 即RoPE相对位置编码、SwiGLU激活函数、RMSNorm(可选安装flash-attention加速)。

在分词器方面,相比目前主流开源模型以中英词表为主,Qwen-14B-Chat使用了约15万token大小的词表。 该词表在GPT-4使用的BPE词表cl100k_base基础上,对中文、多语言进行了优化,在对中、英、代码数据的高效编解码的基础上,对部分多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强。 词表对数字按单个数字位切分。调用较为高效的tiktoken分词库进行分词。

For position encoding, FFN activation function, and normalization calculation methods, we adopt the prevalent practices, i.e., RoPE relative position encoding, SwiGLU for activation function, and RMSNorm for normalization (optional installation of flash-attention for acceleration).

For tokenization, compared to the current mainstream open-source models based on Chinese and English vocabularies, Qwen-14B-Chat uses a vocabulary of over 150K tokens. It first considers efficient encoding of Chinese, English, and code data, and is also more friendly to multilingual languages, enabling users to directly enhance the capability of some languages without expanding the vocabulary. It segments numbers by single digit, and calls the tiktoken tokenizer library for efficient tokenization.

评测效果(Evaluation)

对于Qwen-14B-Chat模型,我们同样评测了常规的中文理解(C-Eval)、英文理解(MMLU)、代码(HumanEval)和数学(GSM8K)等权威任务,同时包含了长序列任务的评测结果。由于Qwen-14B-Chat模型经过对齐后,激发了较强的外部系统调用能力,我们还进行了工具使用能力方面的评测。

提示:由于硬件和框架造成的舍入误差,复现结果如有波动属于正常现象。

For Qwen-14B-Chat, we also evaluate the model on C-Eval, MMLU, HumanEval, GSM8K, etc., as well as the benchmark evaluation for long-context understanding, and tool usage.

Note: Due to rounding errors caused by hardware and framework, differences in reproduced results are possible.

中文评测(Chinese Evaluation)

C-Eval

C-Eval验证集上,我们评价了Qwen-14B-Chat模型的0-shot & 5-shot准确率

We demonstrate the 0-shot & 5-shot accuracy of Qwen-14B-Chat on C-Eval validation set

Model Avg. Acc.
LLaMA2-7B-Chat 31.9
LLaMA2-13B-Chat 36.2
LLaMA2-70B-Chat 44.3
ChatGLM2-6B-Chat 52.6
InternLM-7B-Chat 53.6
Baichuan2-7B-Chat 55.6
Baichuan2-13B-Chat 56.7
Qwen-7B-Chat (original) (0-shot) 54.2
Qwen-7B-Chat (0-shot) 59.7
Qwen-7B-Chat (5-shot) 59.3
Qwen-14B-Chat (0-shot) 69.8
Qwen-14B-Chat (5-shot) 71.7

C-Eval测试集上,Qwen-14B-Chat模型的zero-shot准确率结果如下:

The zero-shot accuracy of Qwen-14B-Chat on C-Eval testing set is provided below:

Model Avg. STEM Social Sciences Humanities Others
Chinese-Alpaca-Plus-13B 41.5 36.6 49.7 43.1 41.2
Chinese-Alpaca-2-7B 40.3 - - - -
ChatGLM2-6B-Chat 50.1 46.4 60.4 50.6 46.9
Baichuan-13B-Chat 51.5 43.7 64.6 56.2 49.2
Qwen-7B-Chat (original) 54.6 47.8 67.6 59.3 50.6
Qwen-7B-Chat 58.6 53.3 72.1 62.8 52.0
Qwen-14B-Chat 69.1 65.1 80.9 71.2 63.4

在14B规模模型上,经过人类指令对齐的Qwen-14B-Chat模型,准确率在同类相近规模模型中仍然处于前列。

Compared with other pretrained models with comparable model size, the human-aligned Qwen-14B-Chat performs well in C-Eval accuracy.

英文评测(English Evaluation)

MMLU

MMLU评测集上,Qwen-14B-Chat模型的 0-shot & 5-shot 准确率如下,效果同样在同类对齐模型中同样表现较优。

The 0-shot & 5-shot accuracy of Qwen-14B-Chat on MMLU is provided below. The performance of Qwen-14B-Chat still on the top between other human-aligned models with comparable size.

Model Avg. Acc.
ChatGLM2-6B-Chat 46.0
LLaMA2-7B-Chat 46.2
InternLM-7B-Chat 51.1
Baichuan2-7B-Chat 52.9
LLaMA2-13B-Chat 54.6
Baichuan2-13B-Chat 57.3
LLaMA2-70B-Chat 63.8
Qwen-7B-Chat (original) (0-shot) 53.9
Qwen-7B-Chat (0-shot) 55.8
Qwen-7B-Chat (5-shot) 57.0
Qwen-14B-Chat (0-shot) 64.6
Qwen-14B-Chat (5-shot) 66.5

代码评测(Coding Evaluation)

Qwen-14B-Chat在HumanEval的zero-shot Pass@1效果如下

The zero-shot Pass@1 of Qwen-14B-Chat on HumanEval is demonstrated below

Model Pass@1
ChatGLM2-6B-Chat 11.0
LLaMA2-7B-Chat 12.2
InternLM-7B-Chat 14.6
Baichuan2-7B-Chat 13.4
LLaMA2-13B-Chat 18.9
Baichuan2-13B-Chat 17.7
LLaMA2-70B-Chat 32.3
Qwen-7B-Chat (original) 24.4
Qwen-7B-Chat 37.2
Qwen-14B-Chat 43.9

数学评测(Mathematics Evaluation)

在评测数学能力的GSM8K上,Qwen-14B-Chat的准确率结果如下

The accuracy of Qwen-14B-Chat on GSM8K is shown below

Model Acc.
LLaMA2-7B-Chat 26.3
ChatGLM2-6B-Chat 28.8
Baichuan2-7B-Chat 32.8
InternLM-7B-Chat 33.0
LLaMA2-13B-Chat 37.1
Baichuan2-13B-Chat 55.3
LLaMA2-70B-Chat 59.3
Qwen-7B-Chat (original) (0-shot) 41.1
Qwen-7B-Chat (0-shot) 50.3
Qwen-7B-Chat (8-shot) 54.1
Qwen-14B-Chat (0-shot) 60.1
Qwen-14B-Chat (8-shot) 59.3

长序列评测(Long-Context Understanding)

通过NTK插值,LogN注意力缩放可以扩展Qwen-14B-Chat的上下文长度。在长文本摘要数据集VCSUM上(文本平均长度在15K左右),Qwen-14B-Chat的Rouge-L结果如下:

(若要启用这些技巧,请将config.json里的use_dynamic_ntkuse_logn_attn设置为true)

We introduce NTK-aware interpolation, LogN attention scaling to extend the context length of Qwen-14B-Chat. The Rouge-L results of Qwen-14B-Chat on long-text summarization dataset VCSUM (The average length of this dataset is around 15K) are shown below:

(To use these tricks, please set use_dynamic_ntk and use_long_attn to true in config.json.)

Model VCSUM (zh)
GPT-3.5-Turbo-16k 16.0
LLama2-7B-Chat 0.2
InternLM-7B-Chat 13.0
ChatGLM2-6B-Chat 16.3
Qwen-14B-Chat 17.3

工具使用能力的评测(Tool Usage)

ReAct Prompting

千问支持通过 ReAct Prompting 调用插件/工具/API。ReAct 也是 LangChain 框架采用的主要方式之一。在我们开源的、用于评估工具使用能力的评测基准上,千问的表现如下:

Qwen-Chat supports calling plugins/tools/APIs through ReAct Prompting. ReAct is also one of the main approaches used by the LangChain framework. In our evaluation benchmark for assessing tool usage capabilities, Qwen-Chat's performance is as follows:

Chinese Tool-Use Benchmark
ModelTool Selection (Acc.↑)Tool Input (Rouge-L↑)False Positive Error↓
GPT-495%0.9015.0%
GPT-3.585%0.8875.0%
Qwen-7B-Chat98%0.917.3%
Qwen-14B-Chat98%0.932.4%

评测基准中出现的插件均没有出现在千问的训练集中。该基准评估了模型在多个候选插件中选择正确插件的准确率、传入插件的参数的合理性、以及假阳率。假阳率(False Positive)定义:在处理不该调用插件的请求时,错误地调用了插件。

The plugins that appear in the evaluation set do not appear in the training set of Qwen. This benchmark evaluates the accuracy of the model in selecting the correct plugin from multiple candidate plugins, the rationality of the parameters passed into the plugin, and the false positive rate. False Positive: Incorrectly invoking a plugin when it should not have been called when responding to a query.

Code Interpreter

为了考察Qwen使用Python Code Interpreter完成数学解题、数据可视化、及文件处理与爬虫等任务的能力,我们专门建设并开源了一个评测这方面能力的评测基准

我们发现Qwen在生成代码的可执行率、结果正确性上均表现较好:

To assess Qwen's ability to use the Python Code Interpreter for tasks such as mathematical problem solving, data visualization, and other general-purpose tasks such as file handling and web scraping, we have created and open-sourced a benchmark specifically designed for evaluating these capabilities. You can find the benchmark at this link.

We have observed that Qwen performs well in terms of code executability and result accuracy when generating code:

Executable Rate of Generated Code (%)
ModelMath↑Visualization↑General↑
GPT-491.985.982.8
GPT-3.589.265.074.1
LLaMA2-7B-Chat 41.9 33.1 24.1
LLaMA2-13B-Chat 50.0 40.5 48.3
CodeLLaMA-7B-Instruct 85.1 54.0 70.7
CodeLLaMA-13B-Instruct 93.2 55.8 74.1
InternLM-7B-Chat-v1.1 78.4 44.2 62.1
InternLM-20B-Chat 70.3 44.2 65.5
Qwen-7B-Chat 82.4 64.4 67.2
Qwen-14B-Chat 89.2 84.1 65.5
Accuracy of Code Execution Results (%)
ModelMath↑Visualization-Hard↑Visualization-Easy↑
GPT-482.866.760.8
GPT-3.547.333.355.7
LLaMA2-7B-Chat 3.9 14.3 39.2
LLaMA2-13B-Chat 8.3 8.3 40.5
CodeLLaMA-7B-Instruct 14.3 26.2 60.8
CodeLLaMA-13B-Instruct 28.2 27.4 62.0
InternLM-7B-Chat-v1.1 28.5 4.8 40.5
InternLM-20B-Chat 34.6 21.4 45.6
Qwen-7B-Chat 41.9 40.5 54.4
Qwen-14B-Chat 58.4 53.6 59.5



Huggingface Agent

千问还具备作为 HuggingFace Agent 的能力。它在 Huggingface 提供的run模式评测基准上的表现如下:

Qwen-Chat also has the capability to be used as a HuggingFace Agent. Its performance on the run-mode benchmark provided by HuggingFace is as follows:

HuggingFace Agent Benchmark- Run Mode
ModelTool Selection↑Tool Used↑Code↑
GPT-410010097.4
GPT-3.595.496.387.0
StarCoder-Base-15B86.187.068.9
StarCoder-15B87.088.068.9
Qwen-7B-Chat87.087.071.5
Qwen-14B-Chat93.594.487.0
HuggingFace Agent Benchmark - Chat Mode
ModelTool Selection↑Tool Used↑Code↑
GPT-497.997.998.5
GPT-3.597.396.889.6
StarCoder-Base-15B97.997.991.1
StarCoder-15B97.997.989.6
Qwen-7B-Chat94.794.785.1
Qwen-14B-Chat97.997.995.5

FAQ

如遇到问题,敬请查阅FAQ以及issue区,如仍无法解决再提交issue。

If you meet problems, please refer to FAQ and the issues first to search a solution before you launch a new issue.

引用 (Citation)

如果你觉得我们的工作对你有帮助,欢迎引用!

If you find our work helpful, feel free to give us a cite.

@article{qwen,
  title={Qwen Technical Report},
  author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu},
  journal={arXiv preprint arXiv:2309.16609},
  year={2023}
}

使用协议(License Agreement)

我们的代码和模型权重对学术研究完全开放,并支持商用。请查看LICENSE了解具体的开源协议细节。如需商用,欢迎填写问卷申请。

Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check LICENSE for more details about the license. If you have requirements for commercial use, please fill out the form to apply.

联系我们(Contact Us)

如果你想给我们的研发团队和产品团队留言,欢迎加入我们的微信群、钉钉群以及Discord!同时,也欢迎通过邮件([email protected])联系我们。

If you are interested to leave a message to either our research team or product team, join our Discord or WeChat groups! Also, feel free to send an email to [email protected].