TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Swallow 70B Instruct - GPTQ
- Model creator: tokyotech-llm
- Original model: Swallow 70B Instruct
Description
This repo contains GPTQ model files for tokyotech-llm's Swallow 70B Instruct.
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- tokyotech-llm's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: Swallow-Instruct
以下に、あるタスクを説明する指示があります。リクエストを適切に完了するための回答を記述してください。\n\n### 指示:\n{prompt}\n\n### 応答:
Known compatible clients / servers
GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
These GPTQ models are known to work in the following inference servers/webuis.
This may not be a complete list; if you know of others, please let me know!
Provided files, and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
Explanation of GPTQ parameters
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as
desc_act
. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
---|---|---|---|---|---|---|---|---|---|
main | 4 | None | Yes | 0.1 | Alpaca Japanese | 4096 | 35.70 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
gptq-4bit-128g-actorder_True | 4 | 128 | Yes | 0.1 | Alpaca Japanese | 4096 | 37.02 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
gptq-4bit-32g-actorder_True | 4 | 32 | Yes | 0.1 | Alpaca Japanese | 4096 | 41.03 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
gptq-3bit--1g-actorder_True | 3 | None | Yes | 0.1 | Alpaca Japanese | 4096 | 27.14 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
gptq-3bit-128g-actorder_True | 3 | 128 | Yes | 0.1 | Alpaca Japanese | 4096 | 28.40 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
gptq-3bit-32g-actorder_True | 3 | 32 | Yes | 0.1 | Alpaca Japanese | 4096 | 32.21 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. |
How to download, including from branches
In text-generation-webui
To download from the main
branch, enter TheBloke/Swallow-70B-instruct-GPTQ
in the "Download model" box.
To download from another branch, add :branchname
to the end of the download name, eg TheBloke/Swallow-70B-instruct-GPTQ:gptq-4bit-128g-actorder_True
From the command line
I recommend using the huggingface-hub
Python library:
pip3 install huggingface-hub
To download the main
branch to a folder called Swallow-70B-instruct-GPTQ
:
mkdir Swallow-70B-instruct-GPTQ
huggingface-cli download TheBloke/Swallow-70B-instruct-GPTQ --local-dir Swallow-70B-instruct-GPTQ --local-dir-use-symlinks False
To download from a different branch, add the --revision
parameter:
mkdir Swallow-70B-instruct-GPTQ
huggingface-cli download TheBloke/Swallow-70B-instruct-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir Swallow-70B-instruct-GPTQ --local-dir-use-symlinks False
More advanced huggingface-cli download usage
If you remove the --local-dir-use-symlinks False
parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: ~/.cache/huggingface
), and symlinks will be added to the specified --local-dir
, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
The cache location can be changed with the HF_HOME
environment variable, and/or the --cache-dir
parameter to huggingface-cli
.
For more documentation on downloading with huggingface-cli
, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.
To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer
:
pip3 install hf_transfer
And set environment variable HF_HUB_ENABLE_HF_TRANSFER
to 1
:
mkdir Swallow-70B-instruct-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Swallow-70B-instruct-GPTQ --local-dir Swallow-70B-instruct-GPTQ --local-dir-use-symlinks False
Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1
before the download command.
With git
(not recommended)
To clone a specific branch with git
, use a command like this:
git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/Swallow-70B-instruct-GPTQ
Note that using Git with HF repos is strongly discouraged. It will be much slower than using huggingface-hub
, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the .git
folder as a blob.)
How to easily download and use this model in text-generation-webui
Please make sure you're using the latest version of text-generation-webui.
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
Click the Model tab.
Under Download custom model or LoRA, enter
TheBloke/Swallow-70B-instruct-GPTQ
.- To download from a specific branch, enter for example
TheBloke/Swallow-70B-instruct-GPTQ:gptq-4bit-128g-actorder_True
- see Provided Files above for the list of branches for each option.
- To download from a specific branch, enter for example
Click Download.
The model will start downloading. Once it's finished it will say "Done".
In the top left, click the refresh icon next to Model.
In the Model dropdown, choose the model you just downloaded:
Swallow-70B-instruct-GPTQ
The model will automatically load, and is now ready for use!
If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file
quantize_config.json
.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file
Once you're ready, click the Text Generation tab and enter a prompt to get started!
Serving this model from Text Generation Inference (TGI)
It's recommended to use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0
Example Docker parameters:
--model-id TheBloke/Swallow-70B-instruct-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
pip3 install huggingface-hub
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''以下に、あるタスクを説明する指示があります。リクエストを適切に完了するための回答を記述してください。\n\n### 指示:\n{prompt}\n\n### 応答:
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: {response}")
Python code example: inference from this GPTQ model
Install the necessary packages
Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
pip3 install --upgrade transformers optimum
# If using PyTorch 2.1 + CUDA 12.x:
pip3 install --upgrade auto-gptq
# or, if using PyTorch 2.1 + CUDA 11.x:
pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.5.1
pip3 install .
Example Python code
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "TheBloke/Swallow-70B-instruct-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-128g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=False,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Write a story about llamas"
system_message = "You are a story writing assistant"
prompt_template=f'''以下に、あるタスクを説明する指示があります。リクエストを適切に完了するための回答を記述してください。\n\n### 指示:\n{prompt}\n\n### 応答:
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
Compatibility
The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
ExLlama is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility.
For a list of clients/servers, please see "Known compatible clients / servers", above.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: tokyotech-llm's Swallow 70B Instruct
Swallow
Our Swallow model has undergone continuous pre-training from the Llama 2 family, primarily with the addition of Japanese language data. The tuned versions use supervised fine-tuning (SFT). Links to other models can be found in the index.
Swallow Model Index
This repository provides large language models developed by TokyoTech-LLM. Read our blog post or our paper (preprint coming soon) for more details!
Model Details
- Model type: Please refer to LLaMA-2 technical report for details on the model architecture.
- Language(s): Japanese English
- Library: Megatron-LM
- Tokenizer: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
- Contact: swallow[at]nlp.c.titech.ac.jp
Base Model Performance
Japanese version
Model | Size | JCommonsenseQA | JEMHopQA | NIILC | JSQuAD | XL-Sum | MGSM | WMT20-en-ja | WMT20-ja-en |
---|---|---|---|---|---|---|---|---|---|
4-shot | 4-shot | 4-shot | 4-shot | 1-shot | 4-shot | 4-shot | 4-shot | ||
Llama 2 | 7B | 0.3852 | 0.4240 | 0.3410 | 0.7917 | 0.1905 | 0.0760 | 0.1783 | 0.1738 |
Swallow | 7B | 0.4808 | 0.5078 | 0.5968 | 0.8573 | 0.1830 | 0.1240 | 0.2510 | 0.1511 |
Llama 2 | 13B | 0.6997 | 0.4415 | 0.4170 | 0.8533 | 0.2139 | 0.1320 | 0.2146 | 0.1982 |
Swallow | 13B | 0.7837 | 0.5063 | 0.6398 | 0.9005 | 0.2168 | 0.2040 | 0.2720 | 0.1771 |
Llama 2 | 70B | 0.8686 | 0.4656 | 0.5256 | 0.9080 | 0.2361 | 0.3560 | 0.2643 | 0.2398 |
Swallow | 70B | 0.9348 | 0.6290 | 0.6960 | 0.9176 | 0.2266 | 0.4840 | 0.3043 | 0.2298 |
Usage
First install additional dependencies in requirements.txt:
pip install -r requirements.txt
Use the instruct model
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "tokyotech-llm/Swallow-7b-instruct-hf"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")
PROMPT_DICT = {
"prompt_input": (
"以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
"リクエストを適切に完了するための回答を記述してください。\n\n"
"### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"
),
"prompt_no_input": (
"以下に、あるタスクを説明する指示があります。"
"リクエストを適切に完了するための回答を記述してください。\n\n"
"### 指示:\n{instruction}\n\n### 応答:"
),
}
def create_prompt(instruction, input=None):
"""
Generates a prompt based on the given instruction and an optional input.
If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
If no input is provided, it uses the 'prompt_no_input' template.
Args:
instruction (str): The instruction describing the task.
input (str, optional): Additional input providing context for the task. Default is None.
Returns:
str: The generated prompt.
"""
if input:
# Use the 'prompt_input' template when additional input is provided
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
else:
# Use the 'prompt_no_input' template when no additional input is provided
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
# Example usage
instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
input_example = "東京工業大学の主なキャンパスについて教えてください"
prompt = create_prompt(instruction_example, input_example)
input_ids = tokenizer.encode(
prompt,
add_special_tokens=False,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=128,
temperature=0.99,
top_p=0.95,
do_sample=True,
)
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
Use the base model
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "tokyotech-llm/Swallow-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
prompt = "東京工業大学の主なキャンパスは、"
input_ids = tokenizer.encode(
prompt,
add_special_tokens=False,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=128,
temperature=0.99,
top_p=0.95,
do_sample=True,
)
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
Training Datasets
Continual Pre-Training
The following datasets were used for continual pre-training.
- Japanese Wikipedia
- RefinedWeb
- Swallow Corpus
- The Pile
Instruction Tuning
The following datasets were used for the instruction tuning.
Risks and Limitations
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
Acknowledgements
We thank Meta Research for releasing Llama 2 under an open license for others to build on.
Our project is supported by the ABCI Large-scale Language Model Building Support Program of the National Institute of Advanced Industrial Science and Technology.
License
Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.
Authors
Here are the team members:
- From Okazaki Laboratory, the following members:
- From YOKOTA Laboratory, the following members:
- Downloads last month
- 22
Model tree for TheBloke/Swallow-70B-instruct-GPTQ
Base model
tokyotech-llm/Swallow-70b-instruct-hf