README.md CHANGED
@@ -1,237 +1,185 @@
1
  ---
 
 
 
2
  language:
3
  - en
4
  license: other
 
5
  tags:
6
  - uncensored
7
- datasets:
8
- - ehartford/wizard_vicuna_70k_unfiltered
9
- model_name: Wizard Vicuna 30B Uncensored
10
- base_model: ehartford/Wizard-Vicuna-30B-Uncensored
11
- inference: false
12
- model_creator: Eric Hartford
13
- model_type: llama
14
- prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
15
- The assistant gives helpful, detailed, and polite answers to the user''s questions.
16
- USER: {prompt} ASSISTANT:
17
-
18
- '
19
- quantized_by: TheBloke
20
  ---
21
 
22
  <!-- header start -->
23
- <!-- 200823 -->
24
- <div style="width: auto; margin-left: auto; margin-right: auto">
25
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
26
  </div>
27
  <div style="display: flex; justify-content: space-between; width: 100%;">
28
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
29
- <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
30
  </div>
31
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
32
- <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
33
  </div>
34
  </div>
35
- <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
36
- <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
37
  <!-- header end -->
38
 
39
- # Wizard Vicuna 30B Uncensored - GPTQ
40
- - Model creator: [Eric Hartford](https://huggingface.co/ehartford)
41
- - Original model: [Wizard Vicuna 30B Uncensored](https://huggingface.co/ehartford/Wizard-Vicuna-30B-Uncensored)
42
-
43
- <!-- description start -->
44
- ## Description
45
 
46
- This repo contains GPTQ model files for [Eric Hartford's Wizard-Vicuna-30B-Uncensored](https://huggingface.co/ehartford/Wizard-Vicuna-30B-Uncensored).
47
 
48
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
49
 
50
- <!-- description end -->
51
- <!-- repositories-available start -->
52
  ## Repositories available
53
 
54
- * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-AWQ)
55
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ)
56
- * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GGUF)
57
- * [Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-fp16)
58
- <!-- repositories-available end -->
59
 
60
- <!-- prompt-template start -->
61
  ## Prompt template: Vicuna
62
 
63
  ```
64
- A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
65
 
 
 
66
  ```
67
 
68
- <!-- prompt-template end -->
69
-
70
-
71
- <!-- README_GPTQ.md-provided-files start -->
72
- ## Provided files and GPTQ parameters
73
 
74
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
75
 
76
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
77
 
78
- All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
79
-
80
- <details>
81
- <summary>Explanation of GPTQ parameters</summary>
82
-
83
- - Bits: The bit size of the quantised model.
84
- - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
85
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
86
- - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
87
- - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
88
- - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
89
- - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
90
-
91
- </details>
92
-
93
- | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
94
- | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
95
- | [main](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ/tree/main) | 4 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 16.94 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
96
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 19.44 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
97
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 18.18 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
98
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 17.55 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
99
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 32.99 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
100
- | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 33.73 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
101
- | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 12.92 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
102
- | [gptq-3bit-128g-actorder_False](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ/tree/gptq-3bit-128g-actorder_False) | 3 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 13.51 GB | No | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
103
 
104
- <!-- README_GPTQ.md-provided-files end -->
105
-
106
- <!-- README_GPTQ.md-download-from-branches start -->
107
  ## How to download from branches
108
 
109
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ:main`
110
  - With Git, you can clone a branch with:
111
  ```
112
- git clone --single-branch --branch main https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ
113
  ```
114
  - In Python Transformers code, the branch is the `revision` parameter; see below.
115
- <!-- README_GPTQ.md-download-from-branches end -->
116
- <!-- README_GPTQ.md-text-generation-webui start -->
117
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
118
 
119
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
120
 
121
- It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
122
 
123
  1. Click the **Model tab**.
124
  2. Under **Download custom model or LoRA**, enter `TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ`.
125
- - To download from a specific branch, enter for example `TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ:main`
126
  - see Provided Files above for the list of branches for each option.
127
  3. Click **Download**.
128
- 4. The model will start downloading. Once it's finished it will say "Done".
129
  5. In the top left, click the refresh icon next to **Model**.
130
  6. In the **Model** dropdown, choose the model you just downloaded: `Wizard-Vicuna-30B-Uncensored-GPTQ`
131
  7. The model will automatically load, and is now ready for use!
132
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
133
- * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
134
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
135
- <!-- README_GPTQ.md-text-generation-webui end -->
136
 
137
- <!-- README_GPTQ.md-use-from-python start -->
138
  ## How to use this GPTQ model from Python code
139
 
140
- ### Install the necessary packages
141
-
142
- Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
143
 
144
- ```shell
145
- pip3 install transformers>=4.32.0 optimum>=1.12.0
146
- pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
147
- ```
148
-
149
- If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
150
 
151
- ```shell
152
- pip3 uninstall -y auto-gptq
153
- git clone https://github.com/PanQiWei/AutoGPTQ
154
- cd AutoGPTQ
155
- pip3 install .
156
- ```
157
-
158
- ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
159
-
160
- If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
161
- ```shell
162
- pip3 uninstall -y transformers
163
- pip3 install git+https://github.com/huggingface/transformers.git
164
- ```
165
-
166
- ### You can then use the following code
167
 
168
  ```python
169
- from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
170
 
171
  model_name_or_path = "TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ"
172
- # To use a different branch, change revision
173
- # For example: revision="main"
174
- model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
175
- device_map="auto",
176
- trust_remote_code=False,
177
- revision="main")
178
 
179
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
  prompt = "Tell me about AI"
182
- prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
183
 
 
 
184
  '''
185
 
186
  print("\n\n*** Generate:")
187
 
188
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
189
- output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
190
  print(tokenizer.decode(output[0]))
191
 
192
  # Inference can also be done using transformers' pipeline
193
 
 
 
 
194
  print("*** Pipeline:")
195
  pipe = pipeline(
196
  "text-generation",
197
  model=model,
198
  tokenizer=tokenizer,
199
  max_new_tokens=512,
200
- do_sample=True,
201
  temperature=0.7,
202
  top_p=0.95,
203
- top_k=40,
204
- repetition_penalty=1.1
205
  )
206
 
207
  print(pipe(prompt_template)[0]['generated_text'])
208
  ```
209
- <!-- README_GPTQ.md-use-from-python end -->
210
 
211
- <!-- README_GPTQ.md-compatibility start -->
212
  ## Compatibility
213
 
214
- The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
215
-
216
- [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
217
 
218
- [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
219
- <!-- README_GPTQ.md-compatibility end -->
220
 
221
  <!-- footer start -->
222
- <!-- 200823 -->
223
  ## Discord
224
 
225
  For further support, and discussions on these models and AI in general, join us at:
226
 
227
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
228
 
229
- ## Thanks, and how to contribute
230
 
231
  Thanks to the [chirper.ai](https://chirper.ai) team!
232
 
233
- Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
234
-
235
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
236
 
237
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -241,80 +189,24 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
241
  * Patreon: https://patreon.com/TheBlokeAI
242
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
243
 
244
- **Special thanks to**: Aemon Algiz.
245
-
246
- **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
247
 
 
248
 
249
  Thank you to all my generous patrons and donaters!
250
 
251
- And thank you again to a16z for their generous grant.
252
-
253
  <!-- footer end -->
254
 
255
  # Original model card: Eric Hartford's Wizard-Vicuna-30B-Uncensored
256
 
257
 
258
- <!-- header start -->
259
- <div style="width: 100%;">
260
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
261
- </div>
262
- <div style="display: flex; justify-content: space-between; width: 100%;">
263
- <div style="display: flex; flex-direction: column; align-items: flex-start;">
264
- <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
265
- </div>
266
- <div style="display: flex; flex-direction: column; align-items: flex-end;">
267
- <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
268
- </div>
269
- </div>
270
- <!-- header end -->
271
-
272
- # Eric Hartford's Wizard-Vicuna-30B-Uncensored GPTQ
273
-
274
- This is an fp16 models of [Eric Hartford's Wizard-Vicuna 30B](https://huggingface.co/ehartford/Wizard-Vicuna-30B-Uncensored).
275
-
276
- It is the result of converting Eric's original fp32 upload to fp16.
277
-
278
- ## Repositories available
279
-
280
- * [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ).
281
- * [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GGML).
282
- * [float16 HF format model for GPU inference and further conversions](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-fp16).
283
-
284
- <!-- footer start -->
285
- ## Discord
286
-
287
- For further support, and discussions on these models and AI in general, join us at:
288
-
289
- [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
290
-
291
- ## Thanks, and how to contribute.
292
-
293
- Thanks to the [chirper.ai](https://chirper.ai) team!
294
-
295
- I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
296
-
297
- If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
298
-
299
- Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
300
-
301
- * Patreon: https://patreon.com/TheBlokeAI
302
- * Ko-Fi: https://ko-fi.com/TheBlokeAI
303
-
304
- **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
305
-
306
- Thank you to all my generous patrons and donaters!
307
- <!-- footer end -->
308
-
309
- # Original model card
310
-
311
  This is [wizard-vicuna-13b](https://huggingface.co/junelee/wizard-vicuna-13b) trained with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA.
312
 
313
  Shout out to the open source AI/ML community, and everyone who helped me out.
314
 
315
- Note:
316
 
317
- An uncensored model has no guardrails.
318
 
319
  You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car.
320
 
 
1
  ---
2
+ datasets:
3
+ - ehartford/wizard_vicuna_70k_unfiltered
4
+ inference: false
5
  language:
6
  - en
7
  license: other
8
+ model_type: llama
9
  tags:
10
  - uncensored
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- header start -->
14
+ <div style="width: 100%;">
15
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
16
  </div>
17
  <div style="display: flex; justify-content: space-between; width: 100%;">
18
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
19
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
20
  </div>
21
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
22
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
23
  </div>
24
  </div>
 
 
25
  <!-- header end -->
26
 
27
+ # Eric Hartford's Wizard-Vicuna-30B-Uncensored GPTQ
 
 
 
 
 
28
 
29
+ These files are GPTQ model files for [Eric Hartford's Wizard-Vicuna-30B-Uncensored](https://huggingface.co/ehartford/Wizard-Vicuna-30B-Uncensored).
30
 
31
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
32
 
33
+ These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
34
+
35
  ## Repositories available
36
 
 
37
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ)
38
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GGML)
39
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-fp16)
 
40
 
 
41
  ## Prompt template: Vicuna
42
 
43
  ```
44
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
45
 
46
+ USER: {prompt}
47
+ ASSISTANT:
48
  ```
49
 
50
+ ## Provided files
 
 
 
 
51
 
52
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
53
 
54
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
55
 
56
+ | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
57
+ | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
58
+ | main | 4 | None | True | 16.94 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
59
+ | gptq-4bit-32g-actorder_True | 4 | 32 | True | 19.44 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
60
+ | gptq-4bit-64g-actorder_True | 4 | 64 | True | 18.18 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
61
+ | gptq-4bit-128g-actorder_True | 4 | 128 | True | 17.55 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
62
+ | gptq-8bit--1g-actorder_True | 8 | None | True | 32.99 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
63
+ | gptq-8bit-128g-actorder_False | 8 | 128 | False | 33.73 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
64
+ | gptq-3bit--1g-actorder_True | 3 | None | True | 12.92 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
65
+ | gptq-3bit-128g-actorder_False | 3 | 128 | False | 13.51 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
 
 
 
67
  ## How to download from branches
68
 
69
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ:gptq-4bit-32g-actorder_True`
70
  - With Git, you can clone a branch with:
71
  ```
72
+ git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ`
73
  ```
74
  - In Python Transformers code, the branch is the `revision` parameter; see below.
75
+
 
76
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
77
 
78
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
79
 
80
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
81
 
82
  1. Click the **Model tab**.
83
  2. Under **Download custom model or LoRA**, enter `TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ`.
84
+ - To download from a specific branch, enter for example `TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ:gptq-4bit-32g-actorder_True`
85
  - see Provided Files above for the list of branches for each option.
86
  3. Click **Download**.
87
+ 4. The model will start downloading. Once it's finished it will say "Done"
88
  5. In the top left, click the refresh icon next to **Model**.
89
  6. In the **Model** dropdown, choose the model you just downloaded: `Wizard-Vicuna-30B-Uncensored-GPTQ`
90
  7. The model will automatically load, and is now ready for use!
91
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
92
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
93
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
94
 
 
95
  ## How to use this GPTQ model from Python code
96
 
97
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
 
 
98
 
99
+ `GITHUB_ACTIONS=true pip install auto-gptq`
 
 
 
 
 
100
 
101
+ Then try the following example code:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  ```python
104
+ from transformers import AutoTokenizer, pipeline, logging
105
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
106
 
107
  model_name_or_path = "TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ"
108
+ model_basename = "Wizard-Vicuna-30B-Uncensored-GPTQ-4bit--1g.act.order"
109
+
110
+ use_triton = False
 
 
 
111
 
112
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
113
 
114
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
115
+ model_basename=model_basename
116
+ use_safetensors=True,
117
+ trust_remote_code=False,
118
+ device="cuda:0",
119
+ use_triton=use_triton,
120
+ quantize_config=None)
121
+
122
+ """
123
+ To download from a specific branch, use the revision parameter, as in this example:
124
+
125
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
126
+ revision="gptq-4bit-32g-actorder_True",
127
+ model_basename=model_basename,
128
+ use_safetensors=True,
129
+ trust_remote_code=False,
130
+ device="cuda:0",
131
+ quantize_config=None)
132
+ """
133
+
134
  prompt = "Tell me about AI"
135
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
136
 
137
+ USER: {prompt}
138
+ ASSISTANT:
139
  '''
140
 
141
  print("\n\n*** Generate:")
142
 
143
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
144
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
145
  print(tokenizer.decode(output[0]))
146
 
147
  # Inference can also be done using transformers' pipeline
148
 
149
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
150
+ logging.set_verbosity(logging.CRITICAL)
151
+
152
  print("*** Pipeline:")
153
  pipe = pipeline(
154
  "text-generation",
155
  model=model,
156
  tokenizer=tokenizer,
157
  max_new_tokens=512,
 
158
  temperature=0.7,
159
  top_p=0.95,
160
+ repetition_penalty=1.15
 
161
  )
162
 
163
  print(pipe(prompt_template)[0]['generated_text'])
164
  ```
 
165
 
 
166
  ## Compatibility
167
 
168
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
169
 
170
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
171
 
172
  <!-- footer start -->
 
173
  ## Discord
174
 
175
  For further support, and discussions on these models and AI in general, join us at:
176
 
177
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
178
 
179
+ ## Thanks, and how to contribute.
180
 
181
  Thanks to the [chirper.ai](https://chirper.ai) team!
182
 
 
 
183
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
184
 
185
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
189
  * Patreon: https://patreon.com/TheBlokeAI
190
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
191
 
192
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
 
 
193
 
194
+ **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
195
 
196
  Thank you to all my generous patrons and donaters!
197
 
 
 
198
  <!-- footer end -->
199
 
200
  # Original model card: Eric Hartford's Wizard-Vicuna-30B-Uncensored
201
 
202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
  This is [wizard-vicuna-13b](https://huggingface.co/junelee/wizard-vicuna-13b) trained with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA.
204
 
205
  Shout out to the open source AI/ML community, and everyone who helped me out.
206
 
207
+ Note:
208
 
209
+ An uncensored model has no guardrails.
210
 
211
  You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car.
212
 
model.safetensors → Wizard-Vicuna-30B-Uncensored-GPTQ-4bit--1g.act.order.safetensors RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:273d2404b0b54c9df0aa3340eabc6b7fcf48c08d9c568fe6e5b77e52e7794c5e
3
- size 16940128464
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21f864bff068ffc5855cd738f1df6137c3539c5e7eadf22945bf20b8e18cc45b
3
+ size 16940128408
config.json CHANGED
@@ -1,34 +1,24 @@
1
  {
2
- "_name_or_path": "/workspace/process/wizard-vicuna-30b/HF/",
3
- "architectures": [
4
- "LlamaForCausalLM"
5
- ],
6
- "bos_token_id": 1,
7
- "eos_token_id": 2,
8
- "hidden_act": "silu",
9
- "hidden_size": 6656,
10
- "initializer_range": 0.02,
11
- "intermediate_size": 17920,
12
- "max_position_embeddings": 2048,
13
- "max_sequence_length": 2048,
14
- "model_type": "llama",
15
- "num_attention_heads": 52,
16
- "num_hidden_layers": 60,
17
- "pad_token_id": 0,
18
- "rms_norm_eps": 1e-06,
19
- "tie_word_embeddings": false,
20
- "torch_dtype": "float16",
21
- "transformers_version": "4.30.0.dev0",
22
- "use_cache": true,
23
- "vocab_size": 32000,
24
- "quantization_config": {
25
- "bits": 4,
26
- "group_size": -1,
27
- "damp_percent": 0.01,
28
- "desc_act": true,
29
- "sym": true,
30
- "true_sequential": true,
31
- "model_file_base_name": "model",
32
- "quant_method": "gptq"
33
- }
34
  }
 
1
  {
2
+ "_name_or_path": "/workspace/process/wizard-vicuna-30b/HF/",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 6656,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 17920,
12
+ "max_position_embeddings": 2048,
13
+ "max_sequence_length": 2048,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 52,
16
+ "num_hidden_layers": 60,
17
+ "pad_token_id": 0,
18
+ "rms_norm_eps": 1e-06,
19
+ "tie_word_embeddings": false,
20
+ "torch_dtype": "float16",
21
+ "transformers_version": "4.30.0.dev0",
22
+ "use_cache": true,
23
+ "vocab_size": 32000
 
 
 
 
 
 
 
 
 
 
24
  }
quantize_config.json CHANGED
@@ -1,9 +1,8 @@
1
  {
2
- "bits": 4,
3
- "group_size": -1,
4
- "damp_percent": 0.01,
5
- "desc_act": true,
6
- "sym": true,
7
- "true_sequential": true,
8
- "model_file_base_name": "model"
9
  }
 
1
  {
2
+ "bits": 4,
3
+ "group_size": -1,
4
+ "damp_percent": 0.01,
5
+ "desc_act": true,
6
+ "sym": true,
7
+ "true_sequential": true
 
8
  }