|
--- |
|
license: other |
|
language: |
|
- en |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- alpaca |
|
- llama |
|
- chat |
|
- gpt4 |
|
inference: false |
|
--- |
|
# GPT4 Alpaca LoRA 30B - 4bit GGML |
|
|
|
This is a 4-bit GGML version of the [Chansung GPT4 Alpaca 30B LoRA model](https://huggingface.co/chansung/gpt4-alpaca-lora-30b). |
|
|
|
It was created by merging the LoRA provided in the above repo with the original Llama 30B model, producing unquantised model [GPT4-Alpaca-LoRA-30B-HF](https://huggingface.co/TheBloke/gpt4-alpaca-lora-30b-HF) |
|
|
|
The files in this repo were then quantized to 4bit for use with [llama.cpp](https://github.com/ggerganov/llama.cpp) using the new 4bit quantisation methods being worked on in [PR #896](https://github.com/ggerganov/llama.cpp/pull/896). |
|
|
|
## Provided files |
|
|
|
Two files are provided. One is quantised using method Q4_0, the other in Q4_1. |
|
|
|
The Q4_1 file requires more RAM and may run a little slower. It may give slightly better results, but this is not proven. |
|
|
|
## How to run in `llama.cpp` |
|
|
|
I use the following command line; adjust for your tastes and needs: |
|
|
|
``` |
|
./main -t 18 -m gpt4-alpaca-lora-30B.GGML.q4_1.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Instruction: |
|
Write a story about llamas |
|
### Response:" |
|
``` |
|
Change `-t 18` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. |
|
|
|
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` |
|
|
|
# Original GPT4 Alpaca Lora model card |
|
|
|
This repository comes with LoRA checkpoint to make LLaMA into a chatbot like language model. The checkpoint is the output of instruction following fine-tuning process with the following settings on 8xA100(40G) DGX system. |
|
- Training script: borrowed from the official [Alpaca-LoRA](https://github.com/tloen/alpaca-lora) implementation |
|
- Training script: |
|
```shell |
|
python finetune.py \ |
|
--base_model='decapoda-research/llama-30b-hf' \ |
|
--data_path='alpaca_data_gpt4.json' \ |
|
--num_epochs=10 \ |
|
--cutoff_len=512 \ |
|
--group_by_length \ |
|
--output_dir='./gpt4-alpaca-lora-30b' \ |
|
--lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \ |
|
--lora_r=16 \ |
|
--batch_size=... \ |
|
--micro_batch_size=... |
|
``` |
|
|
|
You can find how the training went from W&B report [here](https://wandb.ai/chansung18/gpt4_alpaca_lora/runs/w3syd157?workspace=user-chansung18). |
|
|