Edit model card
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Sqlcoder - GGUF

Description

This repo contains GGUF format model files for Defog.ai's Sqlcoder.

About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplate list of clients and libraries that are known to support GGUF:

  • llama.cpp. The source project for GGUF. Offers a CLI and a server option.
  • text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
  • KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
  • LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
  • LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
  • Faraday.dev, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
  • llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
  • candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.

Repositories available

Prompt template: Unknown

{prompt}

Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit d0cee0d

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

Explanation of quantisation methods

Click to see details

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
sqlcoder.Q2_K.gguf Q2_K 2 6.73 GB 9.23 GB smallest, significant quality loss - not recommended for most purposes
sqlcoder.Q3_K_S.gguf Q3_K_S 3 6.93 GB 9.43 GB very small, high quality loss
sqlcoder.Q3_K_M.gguf Q3_K_M 3 8.18 GB 10.68 GB very small, high quality loss
sqlcoder.Q4_0.gguf Q4_0 4 8.99 GB 11.49 GB legacy; small, very high quality loss - prefer using Q3_K_M
sqlcoder.Q4_K_S.gguf Q4_K_S 4 9.06 GB 11.56 GB small, greater quality loss
sqlcoder.Q3_K_L.gguf Q3_K_L 3 9.08 GB 11.58 GB small, substantial quality loss
sqlcoder.Q4_K_M.gguf Q4_K_M 4 9.96 GB 12.46 GB medium, balanced quality - recommended
sqlcoder.Q5_0.gguf Q5_0 5 10.93 GB 13.43 GB legacy; medium, balanced quality - prefer using Q4_K_M
sqlcoder.Q5_K_S.gguf Q5_K_S 5 10.93 GB 13.43 GB large, low quality loss - recommended
sqlcoder.Q5_K_M.gguf Q5_K_M 5 11.54 GB 14.04 GB large, very low quality loss - recommended
sqlcoder.Q6_K.gguf Q6_K 6 12.99 GB 15.49 GB very large, extremely low quality loss
sqlcoder.Q8_0.gguf Q8_0 8 16.82 GB 19.32 GB very large, extremely low quality loss - not recommended

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to download GGUF files

Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:

  • LM Studio
  • LoLLMS Web UI
  • Faraday.dev

In text-generation-webui

Under Download Model, you can enter the model repo: TheBloke/sqlcoder-GGUF and below it, a specific filename to download, such as: sqlcoder.Q4_K_M.gguf.

Then click Download.

On the command line, including multiple files at once

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

Then you can download any individual model file to the current directory, at high speed, with a command like this:

huggingface-cli download TheBloke/sqlcoder-GGUF sqlcoder.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
More advanced huggingface-cli download usage

You can also download multiple files at once with a pattern:

huggingface-cli download TheBloke/sqlcoder-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/sqlcoder-GGUF sqlcoder.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

Example llama.cpp command

Make sure you are using llama.cpp from commit d0cee0d or later.

./main -ngl 32 -m sqlcoder.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}"

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change -c 2048 to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp.md.

How to use with LangChain

Here are guides on using llama-cpp-python and ctransformers with LangChain:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Defog.ai's Sqlcoder

Defog SQLCoder

Defog's SQLCoder is a state-of-the-art LLM for converting natural language questions to SQL queries.

Interactive Demo | ♾️ Colab | 🐦 Twitter

TL;DR

SQLCoder is a 15B parameter model that slightly outperforms gpt-3.5-turbo for natural language to SQL generation tasks on our sql-eval framework, and significantly outperforms all popular open-source models. It also significantly outperforms text-davinci-003, a model that's more than 10 times its size.

SQLCoder is fine-tuned on a base StarCoder model.

Results on novel datasets not seen in training

model perc_correct
gpt-4 74.3
defog-sqlcoder 64.6
gpt-3.5-turbo 60.6
defog-easysql 57.1
text-davinci-003 54.3
wizardcoder 52.0
starcoder 45.1

License

The model weights have a CC BY-SA 4.0 license, with OpenRAIL-M clauses for responsible use attached. The TL;DR is that you can use and modify the model for any purpose – including commercial use. However, if you modify the weights (for example, by fine-tuning), you must open-source your modified weights under the same CC BY-SA 4.0 license terms.

Training

Defog was trained on 10,537 human-curated questions across 2 epochs. These questions were based on 10 different schemas. None of the schemas in the training data were included in our evaluation framework.

Training happened in 2 phases. The first phase was on questions that were classified as "easy" or "medium" difficulty, and the second phase was on questions that were classified as "hard" or "extra hard" difficulty.

The results of training on our easy+medium data were stored in a model called defog-easy. We found that the additional training on hard+extra-hard data led to a 7 percentage point increase in performance.

Results by question category

We classified each generated question into one of 5 categories. The table displays the percentage of questions answered correctly by each model, broken down by category.

query_category gpt-4 defog-sqlcoder gpt-3.5-turbo defog-easy text-davinci-003 wizard-coder star-coder
group_by 82.9 77.1 71.4 62.9 62.9 68.6 54.3
order_by 71.4 65.7 60.0 68.6 60.0 54.3 57.1
ratio 62.9 57.1 48.6 40.0 37.1 22.9 17.1
table_join 74.3 57.1 60.0 54.3 51.4 54.3 51.4
where 80.0 65.7 62.9 60.0 60.0 60.0 45.7

Using SQLCoder

You can use SQLCoder via the transformers library by downloading our model weights from the HuggingFace repo. We have added sample code for inference here. You can also use a demo on our website here, or run SQLCoder in Colab here

Hardware Requirements

SQLCoder has been tested on an A100 40GB GPU with bfloat16 weights. You can also load an 8-bit quantized version of the model on consumer GPUs with 20GB or more of memory – like RTX 4090, RTX 3090, and Apple M2 Pro, M2 Max, or M2 Ultra Chips with 20GB or more of memory.

Todo

  • Open-source the v1 model weights
  • Train the model on more data, with higher data variance
  • Tune the model further with Reward Modelling and RLHF
  • Pretrain a model from scratch that specializes in SQL analysis
Downloads last month
309
GGUF
Model size
15.8B params
Architecture
starcoder

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/sqlcoder-GGUF

Base model

defog/sqlcoder
Quantized
(2)
this model