metadata
base_model: allenai/longformer-base-4096
tags:
- generated_from_trainer
datasets:
- essays_su_g
metrics:
- accuracy
model-index:
- name: longformer-sep_tok
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: essays_su_g
type: essays_su_g
config: sep_tok
split: train[80%:100%]
args: sep_tok
metrics:
- name: Accuracy
type: accuracy
value: 0.8854738259552264
longformer-sep_tok
This model is a fine-tuned version of allenai/longformer-base-4096 on the essays_su_g dataset. It achieves the following results on the evaluation set:
- Loss: 0.2621
- Claim: {'precision': 0.5981237322515213, 'recall': 0.565978886756238, 'f1-score': 0.5816074950690335, 'support': 4168.0}
- Majorclaim: {'precision': 0.8415746519443111, 'recall': 0.8145910780669146, 'f1-score': 0.8278630460448643, 'support': 2152.0}
- O: {'precision': 0.9999115904871364, 'recall': 0.9998231966053748, 'f1-score': 0.9998673915926268, 'support': 11312.0}
- Premise: {'precision': 0.8798415137058301, 'recall': 0.9012672906485546, 'f1-score': 0.8904255319148937, 'support': 12073.0}
- Accuracy: 0.8855
- Macro avg: {'precision': 0.8298628720971998, 'recall': 0.8204151130192705, 'f1-score': 0.8249408661553546, 'support': 29705.0}
- Weighted avg: {'precision': 0.8832645976626653, 'recall': 0.8854738259552264, 'f1-score': 0.8842386364262106, 'support': 29705.0}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 41 | 0.3617 | {'precision': 0.4788679245283019, 'recall': 0.30446257197696736, 'f1-score': 0.37224992666471113, 'support': 4168.0} | {'precision': 0.6963803349540789, 'recall': 0.5989776951672863, 'f1-score': 0.6440169872595554, 'support': 2152.0} | {'precision': 0.9991923180472045, 'recall': 0.9842644978783592, 'f1-score': 0.9916722333556, 'support': 11312.0} | {'precision': 0.8126733518241945, 'recall': 0.9464921726165825, 'f1-score': 0.8744929976276117, 'support': 12073.0} | 0.8456 | {'precision': 0.7467784823384449, 'recall': 0.7085492344097988, 'f1-score': 0.7206080362268695, 'support': 29705.0} | {'precision': 0.8284396858636128, 'recall': 0.8456152162935533, 'f1-score': 0.8319479048980907, 'support': 29705.0} |
No log | 2.0 | 82 | 0.2796 | {'precision': 0.5955649419218585, 'recall': 0.4059500959692898, 'f1-score': 0.4828078185190469, 'support': 4168.0} | {'precision': 0.760759493670886, 'recall': 0.8378252788104089, 'f1-score': 0.7974347633790357, 'support': 2152.0} | {'precision': 0.9999115357395613, 'recall': 0.9992043847241867, 'f1-score': 0.999557835160948, 'support': 11312.0} | {'precision': 0.8505686125852919, 'recall': 0.9292636461525718, 'f1-score': 0.8881763844357361, 'support': 12073.0} | 0.8758 | {'precision': 0.8017011459793993, 'recall': 0.7930608514141144, 'f1-score': 0.7919942003736917, 'support': 29705.0} | {'precision': 0.8651534509455714, 'recall': 0.8758458172024912, 'f1-score': 0.8671393475513334, 'support': 29705.0} |
No log | 3.0 | 123 | 0.2584 | {'precision': 0.6091815161582603, 'recall': 0.48392514395393477, 'f1-score': 0.5393769220484022, 'support': 4168.0} | {'precision': 0.7808161548169962, 'recall': 0.862453531598513, 'f1-score': 0.8196069772576728, 'support': 2152.0} | {'precision': 0.9999115748518879, 'recall': 0.9996463932107497, 'f1-score': 0.9997789664471067, 'support': 11312.0} | {'precision': 0.8697670758577274, 'recall': 0.9155139567630249, 'f1-score': 0.892054396513458, 'support': 12073.0} | 0.8832 | {'precision': 0.8149190804212179, 'recall': 0.8153847563815556, 'f1-score': 0.8127043155666599, 'support': 29705.0} | {'precision': 0.8763198978646256, 'recall': 0.8831509846827134, 'f1-score': 0.8783433638684701, 'support': 29705.0} |
No log | 4.0 | 164 | 0.2543 | {'precision': 0.5829736211031175, 'recall': 0.583253358925144, 'f1-score': 0.58311345646438, 'support': 4168.0} | {'precision': 0.8634197988353626, 'recall': 0.7578996282527881, 'f1-score': 0.8072259341747091, 'support': 2152.0} | {'precision': 0.9999115904871364, 'recall': 0.9998231966053748, 'f1-score': 0.9998673915926268, 'support': 11312.0} | {'precision': 0.8795297932711795, 'recall': 0.89861674811563, 'f1-score': 0.8889708292363159, 'support': 12073.0} | 0.8827 | {'precision': 0.831458700924199, 'recall': 0.8098982329747342, 'f1-score': 0.8197944028670079, 'support': 29705.0} | {'precision': 0.8825947337352275, 'recall': 0.8827133479212254, 'f1-score': 0.8823636375005335, 'support': 29705.0} |
No log | 5.0 | 205 | 0.2621 | {'precision': 0.5981237322515213, 'recall': 0.565978886756238, 'f1-score': 0.5816074950690335, 'support': 4168.0} | {'precision': 0.8415746519443111, 'recall': 0.8145910780669146, 'f1-score': 0.8278630460448643, 'support': 2152.0} | {'precision': 0.9999115904871364, 'recall': 0.9998231966053748, 'f1-score': 0.9998673915926268, 'support': 11312.0} | {'precision': 0.8798415137058301, 'recall': 0.9012672906485546, 'f1-score': 0.8904255319148937, 'support': 12073.0} | 0.8855 | {'precision': 0.8298628720971998, 'recall': 0.8204151130192705, 'f1-score': 0.8249408661553546, 'support': 29705.0} | {'precision': 0.8832645976626653, 'recall': 0.8854738259552264, 'f1-score': 0.8842386364262106, 'support': 29705.0} |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2