ToeLay's picture
End of training
50df5f2 verified
metadata
library_name: transformers
language:
  - my
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - chuuhtetnaing/myanmar-speech-dataset-openslr-80
metrics:
  - wer
model-index:
  - name: Whisper Large V3 Turbo Burmese Finetune
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Myanmar Speech Dataset (OpenSLR-80)
          type: chuuhtetnaing/myanmar-speech-dataset-openslr-80
          args: 'config: my, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 55.78806767586821

Whisper Large V3 Turbo Burmese Finetune

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Myanmar Speech Dataset (OpenSLR-80) dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2310
  • Wer: 55.7881

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7755 1.0 143 0.3657 92.8317
0.2954 2.0 286 0.2669 85.6189
0.2483 3.0 429 0.2830 82.7248
0.2332 4.0 572 0.2922 83.3927
0.204 5.0 715 0.2338 78.8068
0.1612 6.0 858 0.1876 74.8442
0.1203 7.0 1001 0.1940 72.1728
0.0919 8.0 1144 0.1639 65.8504
0.0663 9.0 1287 0.1610 62.5557
0.0461 10.0 1430 0.1633 63.2235
0.0336 11.0 1573 0.1830 62.8228
0.0238 12.0 1716 0.1777 60.5521
0.0153 13.0 1859 0.1783 59.4835
0.0099 14.0 2002 0.1945 58.2369
0.0066 15.0 2145 0.2002 57.1683
0.003 16.0 2288 0.2148 57.1683
0.0015 17.0 2431 0.2241 55.9662
0.0006 18.0 2574 0.2286 56.2778
0.0003 19.0 2717 0.2296 55.8771
0.0001 20.0 2860 0.2310 55.7881

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3