multibert_testrun / README.md
Tommert25's picture
End of training
5442660
metadata
license: apache-2.0
base_model: bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - recall
  - accuracy
model-index:
  - name: multibert_testrun
    results: []

multibert_testrun

This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4300
  • Precisions: 0.8488
  • Recall: 0.7908
  • F-measure: 0.8172
  • Accuracy: 0.9404

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.4196 1.0 269 0.3190 0.8426 0.7090 0.7230 0.9078
0.2111 2.0 538 0.2981 0.7730 0.7491 0.7551 0.9190
0.1275 3.0 807 0.2666 0.8158 0.7744 0.7915 0.9346
0.0868 4.0 1076 0.2929 0.8276 0.7891 0.8050 0.9349
0.0608 5.0 1345 0.3253 0.8370 0.7803 0.8043 0.9353
0.0353 6.0 1614 0.3723 0.8153 0.7999 0.8051 0.9360
0.0254 7.0 1883 0.4149 0.8266 0.7688 0.7934 0.9339
0.0203 8.0 2152 0.4399 0.8356 0.7755 0.8028 0.9357
0.0146 9.0 2421 0.4413 0.8295 0.7845 0.8045 0.9349
0.0108 10.0 2690 0.4300 0.8488 0.7908 0.8172 0.9404
0.0054 11.0 2959 0.4428 0.8317 0.7858 0.8062 0.9357
0.004 12.0 3228 0.4681 0.8403 0.7861 0.8095 0.9375
0.0019 13.0 3497 0.4725 0.8409 0.7901 0.8123 0.9386
0.0013 14.0 3766 0.4839 0.8437 0.7895 0.8137 0.9404

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1