Tomor0720's picture
update model card README.md
7110ff4
---
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: deberta-base-finetuned-qqp
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: qqp
split: train
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.9127627999010636
- name: F1
type: f1
value: 0.8844099236391046
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-base-finetuned-qqp
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2617
- Accuracy: 0.9128
- F1: 0.8844
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.2412 | 1.0 | 22741 | 0.2369 | 0.9048 | 0.8753 |
| 0.1742 | 2.0 | 45482 | 0.2617 | 0.9128 | 0.8844 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2