MobileViT_Food_80epoch

This model is a fine-tuned version of apple/mobilevit-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7769
  • Accuracy: 0.8053

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.5902 0.9994 1183 4.5818 0.0286
4.2708 1.9996 2367 4.2247 0.1690
3.7077 2.9998 3551 3.5174 0.2602
3.271 4.0 4735 2.9216 0.3432
2.8193 4.9994 5918 2.4241 0.4276
2.4733 5.9996 7102 2.0284 0.5017
2.1674 6.9998 8286 1.7180 0.5674
1.9884 8.0 9470 1.5144 0.6122
1.7582 8.9994 10653 1.3711 0.6450
1.4781 9.9996 11837 1.2530 0.6689
1.6275 10.9998 13021 1.1598 0.6924
1.5292 12.0 14205 1.1260 0.7046
1.3675 12.9994 15388 1.0912 0.7122
1.3782 13.9996 16572 1.0276 0.7255
1.3084 14.9998 17756 1.0042 0.7345
1.1715 16.0 18940 0.9771 0.7427
1.2386 16.9994 20123 0.9601 0.7461
1.1787 17.9996 21307 0.9489 0.7472
1.1716 18.9998 22491 0.9360 0.7516
1.1363 20.0 23675 0.9129 0.7595
1.2677 20.9994 24858 0.9007 0.7633
1.2019 21.9996 26042 0.8869 0.7657
1.0633 22.9998 27226 0.8835 0.7656
1.0393 24.0 28410 0.8742 0.7693
0.9558 24.9994 29593 0.8704 0.7705
1.0596 25.9996 30777 0.8455 0.7764
1.0749 26.9998 31961 0.8431 0.7793
0.9913 28.0 33145 0.8332 0.7795
0.9477 28.9994 34328 0.8434 0.7777
0.9681 29.9996 35512 0.8215 0.7840
0.9356 30.9998 36696 0.8050 0.7888
0.806 32.0 37880 0.8152 0.7870
1.0011 32.9994 39063 0.8089 0.7843
0.9268 33.9996 40247 0.8018 0.7884
0.8209 34.9998 41431 0.8147 0.7876
0.8193 36.0 42615 0.8043 0.7893
0.8523 36.9994 43798 0.8014 0.7893
0.9134 37.9996 44982 0.7995 0.7895
0.9263 38.9998 46166 0.7928 0.7896
0.9393 40.0 47350 0.7951 0.7952
0.8028 40.9994 48533 0.7840 0.7967
0.8299 41.9996 49717 0.7994 0.7929
0.791 42.9998 50901 0.7873 0.7921
0.8739 44.0 52085 0.7869 0.7956
0.8777 44.9994 53268 0.7835 0.7952
0.8077 45.9996 54452 0.7815 0.7957
0.9119 46.9998 55636 0.7753 0.7984
0.9867 48.0 56820 0.7824 0.7969
0.8115 48.9994 58003 0.7852 0.7975
0.779 49.9996 59187 0.7815 0.7992
0.755 50.9998 60371 0.7796 0.8011
0.7529 52.0 61555 0.7739 0.8014
0.6878 52.9994 62738 0.7914 0.7989
0.744 53.9996 63922 0.7774 0.8002
0.7346 54.9998 65106 0.7679 0.8012
0.7672 56.0 66290 0.7696 0.7998
0.8018 56.9994 67473 0.7877 0.7987
0.7507 57.9996 68657 0.7903 0.7979
0.7632 58.9998 69841 0.7831 0.8010
0.7013 60.0 71025 0.7799 0.7985
0.7364 60.9994 72208 0.7527 0.8079
0.8036 61.9996 73392 0.7664 0.8010
0.74 62.9998 74576 0.7683 0.8022
0.6531 64.0 75760 0.7548 0.8021
0.7375 64.9994 76943 0.7623 0.8022
0.7228 65.9996 78127 0.7820 0.8028
0.7318 66.9998 79311 0.7625 0.8008
0.6529 68.0 80495 0.7693 0.8036
0.68 68.9994 81678 0.7371 0.8093
0.7396 69.9996 82862 0.7699 0.8040
0.7388 70.9998 84046 0.7596 0.8038
0.7135 72.0 85230 0.7607 0.8043
0.6667 72.9994 86413 0.7666 0.8034
0.6866 73.9996 87597 0.7640 0.8046
0.6601 74.9998 88781 0.7573 0.8037
0.7305 76.0 89965 0.7443 0.8094
0.7507 76.9994 91148 0.7636 0.8053
0.7073 77.9996 92332 0.7692 0.8033
0.688 78.9998 93516 0.7609 0.8044
0.6694 79.9493 94640 0.7769 0.8053

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
26
Safetensors
Model size
5.01M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tr13/MobileViT_Food_80epoch

Finetuned
(9)
this model