|
--- |
|
license: mit |
|
base_model: facebook/esm2_t33_650M_UR50D |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: esm2_t33_650M_UR50D-finetuned-localization |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# esm2_t33_650M_UR50D-finetuned-localization |
|
|
|
This model is a fine-tuned version of [facebook/esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0689 |
|
- Rmse: 1.0339 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rmse | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| No log | 1.0 | 226 | 1.2216 | 1.1052 | |
|
| No log | 2.0 | 452 | 1.7920 | 1.3387 | |
|
| 1.7878 | 3.0 | 678 | 1.0784 | 1.0385 | |
|
| 1.7878 | 4.0 | 904 | 1.4254 | 1.1939 | |
|
| 1.2236 | 5.0 | 1130 | 1.5014 | 1.2253 | |
|
| 1.2236 | 6.0 | 1356 | 1.3869 | 1.1777 | |
|
| 0.6751 | 7.0 | 1582 | 0.9855 | 0.9927 | |
|
| 0.6751 | 8.0 | 1808 | 1.1011 | 1.0493 | |
|
| 0.2989 | 9.0 | 2034 | 1.3254 | 1.1512 | |
|
| 0.2989 | 10.0 | 2260 | 1.1216 | 1.0590 | |
|
| 0.2989 | 11.0 | 2486 | 1.1718 | 1.0825 | |
|
| 0.1584 | 12.0 | 2712 | 1.0833 | 1.0408 | |
|
| 0.1584 | 13.0 | 2938 | 1.0868 | 1.0425 | |
|
| 0.0783 | 14.0 | 3164 | 1.0736 | 1.0362 | |
|
| 0.0783 | 15.0 | 3390 | 1.0607 | 1.0299 | |
|
| 0.0467 | 16.0 | 3616 | 1.0792 | 1.0388 | |
|
| 0.0467 | 17.0 | 3842 | 1.0528 | 1.0261 | |
|
| 0.0199 | 18.0 | 4068 | 1.0405 | 1.0201 | |
|
| 0.0199 | 19.0 | 4294 | 1.0931 | 1.0455 | |
|
| 0.0129 | 20.0 | 4520 | 1.0766 | 1.0376 | |
|
| 0.0129 | 21.0 | 4746 | 1.0486 | 1.0240 | |
|
| 0.0129 | 22.0 | 4972 | 1.0801 | 1.0393 | |
|
| 0.0086 | 23.0 | 5198 | 1.0636 | 1.0313 | |
|
| 0.0086 | 24.0 | 5424 | 1.0675 | 1.0332 | |
|
| 0.0032 | 25.0 | 5650 | 1.0689 | 1.0339 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|