File size: 16,077 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
<div align="center">
  <img src="docs/en/_static/image/logo.svg" width="500px"/>
  <br />
  <br />

[![docs](https://readthedocs.org/projects/opencompass/badge)](https://opencompass.readthedocs.io/en)
[![license](https://img.shields.io/github/license/InternLM/opencompass.svg)](https://github.com/open-compass/opencompass/blob/main/LICENSE)

<!-- [![PyPI](https://badge.fury.io/py/opencompass.svg)](https://pypi.org/project/opencompass/) -->

[🌐Website](https://opencompass.org.cn/) |
[📘Documentation](https://opencompass.readthedocs.io/en/latest/) |
[🛠️Installation](https://opencompass.readthedocs.io/en/latest/get_started/installation.html) |
[🤔Reporting Issues](https://github.com/open-compass/opencompass/issues/new/choose)

English | [简体中文](README_zh-CN.md)

</div>

<p align="center">
    👋 join us on <a href="https://discord.gg/KKwfEbFj7U" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=opencompass" target="_blank">WeChat</a>
</p>

## 📣 OpenCompass 2023 LLM Annual Leaderboard

We are honored to have witnessed the tremendous progress of artificial general intelligence together with the community in the past year, and we are also very pleased that **OpenCompass** can help numerous developers and users.

We announce the launch of the **OpenCompass 2023 LLM Annual Leaderboard** plan. We expect to release the annual leaderboard of the LLMs in January 2024, systematically evaluating the performance of LLMs in various capabilities such as language, knowledge, reasoning, creation, long-text, and agents.

At that time, we will release rankings for both open-source models and commercial API models, aiming to provide a comprehensive, objective, and neutral reference for the industry and research community.

We sincerely invite various large models to join the OpenCompass to showcase their performance advantages in different fields. At the same time, we also welcome researchers and developers to provide valuable suggestions and contributions to jointly promote the development of the LLMs. If you have any questions or needs, please feel free to [contact us](mailto:[email protected]). In addition, relevant evaluation contents, performance statistics, and evaluation methods will be open-source along with the leaderboard release.

We have provided the more details of the CompassBench 2023 in [Doc](docs/zh_cn/advanced_guides/compassbench_intro.md).

Let's look forward to the release of the OpenCompass 2023 LLM Annual Leaderboard!

## 🧭	Welcome

to **OpenCompass**!

Just like a compass guides us on our journey, OpenCompass will guide you through the complex landscape of evaluating large language models. With its powerful algorithms and intuitive interface, OpenCompass makes it easy to assess the quality and effectiveness of your NLP models.

🚩🚩🚩 Explore opportunities at OpenCompass! We're currently **hiring full-time researchers/engineers and interns**. If you're passionate about LLM and OpenCompass, don't hesitate to reach out to us via [email](mailto:[email protected]). We'd love to hear from you!

🔥🔥🔥 We are delighted to announce that **the OpenCompass has been recommended by the Meta AI**, click [Get Started](https://ai.meta.com/llama/get-started/#validation) of Llama for more information.

> **Attention**<br />
> We launch the OpenCompass Collaboration project, welcome to support diverse evaluation benchmarks into OpenCompass!
> Clike [Issue](https://github.com/open-compass/opencompass/issues/248) for more information.
> Let's work together to build a more powerful OpenCompass toolkit!

## 🚀 What's New <a><img width="35" height="20" src="https://user-images.githubusercontent.com/12782558/212848161-5e783dd6-11e8-4fe0-bbba-39ffb77730be.png"></a>

- **\[2024.01.17\]** We supported the evaluation of [InternLM2](https://github.com/open-compass/opencompass/blob/main/configs/eval_internlm2_keyset.py) and [InternLM2-Chat](https://github.com/open-compass/opencompass/blob/main/configs/eval_internlm2_chat_keyset.py), InternLM2 showed extremely strong performance in these tests, welcome to try! 🔥🔥🔥.
- **\[2024.01.17\]** We supported the needle in a haystack test with multiple needles, more information can be found [here](https://opencompass.readthedocs.io/en/latest/advanced_guides/needleinahaystack_eval.html#id8) 🔥🔥🔥.
- **\[2023.12.28\]** We have enabled seamless evaluation of all models developed using [LLaMA2-Accessory](https://github.com/Alpha-VLLM/LLaMA2-Accessory), a powerful toolkit for comprehensive LLM development. 🔥🔥🔥.
- **\[2023.12.22\]** We have released [T-Eval](https://github.com/open-compass/T-Eval), a step-by-step evaluation benchmark to gauge your LLMs on tool utilization. Welcome to our [Leaderboard](https://open-compass.github.io/T-Eval/leaderboard.html) for more details! 🔥🔥🔥.
- **\[2023.12.10\]** We have released [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), a toolkit for evaluating vision-language models (VLMs), currently support 20+ VLMs and 7 multi-modal benchmarks (including MMBench series).
- **\[2023.12.10\]** We have supported Mistral AI's MoE LLM: **Mixtral-8x7B-32K**. Welcome to [MixtralKit](https://github.com/open-compass/MixtralKit) for more details about inference and evaluation.

> [More](docs/en/notes/news.md)

## ✨ Introduction

![image](https://github.com/open-compass/opencompass/assets/22607038/f45fe125-4aed-4f8c-8fe8-df4efb41a8ea)

OpenCompass is a one-stop platform for large model evaluation, aiming to provide a fair, open, and reproducible benchmark for large model evaluation. Its main features include:

- **Comprehensive support for models and datasets**: Pre-support for 20+ HuggingFace and API models, a model evaluation scheme of 70+ datasets with about 400,000 questions, comprehensively evaluating the capabilities of the models in five dimensions.

- **Efficient distributed evaluation**: One line command to implement task division and distributed evaluation, completing the full evaluation of billion-scale models in just a few hours.

- **Diversified evaluation paradigms**: Support for zero-shot, few-shot, and chain-of-thought evaluations, combined with standard or dialogue-type prompt templates, to easily stimulate the maximum performance of various models.

- **Modular design with high extensibility**: Want to add new models or datasets, customize an advanced task division strategy, or even support a new cluster management system? Everything about OpenCompass can be easily expanded!

- **Experiment management and reporting mechanism**: Use config files to fully record each experiment, and support real-time reporting of results.

## 📊 Leaderboard

We provide [OpenCompass Leaderboard](https://opencompass.org.cn/rank) for the community to rank all public models and API models. If you would like to join the evaluation, please provide the model repository URL or a standard API interface to the email address `[email protected]`.

<p align="right"><a href="#top">🔝Back to top</a></p>

## 🛠️ Installation

Below are the steps for quick installation and datasets preparation.

### 💻 Environment Setup

#### Open-source Models with GPU

```bash
conda create --name opencompass python=3.10 pytorch torchvision pytorch-cuda -c nvidia -c pytorch -y
conda activate opencompass
git clone https://github.com/open-compass/opencompass opencompass
cd opencompass
pip install -e .
```

#### API Models with CPU-only

```bash
conda create -n opencompass python=3.10 pytorch torchvision torchaudio cpuonly -c pytorch -y
conda activate opencompass
git clone https://github.com/open-compass/opencompass opencompass
cd opencompass
pip install -e .
# also please install requiresments packages via `pip install -r requirements/api.txt` for API models if needed.
```

### 📂 Data Preparation

```bash
# Download dataset to data/ folder
wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-core-20240207.zip
unzip OpenCompassData-core-20240207.zip
```

Some third-party features, like Humaneval and Llama, may require additional steps to work properly, for detailed steps please refer to the [Installation Guide](https://opencompass.readthedocs.io/en/latest/get_started/installation.html).

<p align="right"><a href="#top">🔝Back to top</a></p>

## 🏗️ ️Evaluation

After ensuring that OpenCompass is installed correctly according to the above steps and the datasets are prepared, you can evaluate the performance of the LLaMA-7b model on the MMLU and C-Eval datasets using the following command:

```bash
python run.py --models hf_llama_7b --datasets mmlu_ppl ceval_ppl
```

OpenCompass has predefined configurations for many models and datasets. You can list all available model and dataset configurations using the [tools](./docs/en/tools.md#list-configs).

```bash
# List all configurations
python tools/list_configs.py
# List all configurations related to llama and mmlu
python tools/list_configs.py llama mmlu
```

You can also evaluate other HuggingFace models via command line. Taking LLaMA-7b as an example:

```bash
python run.py --datasets ceval_ppl mmlu_ppl \
--hf-path huggyllama/llama-7b \  # HuggingFace model path
--model-kwargs device_map='auto' \  # Arguments for model construction
--tokenizer-kwargs padding_side='left' truncation='left' use_fast=False \  # Arguments for tokenizer construction
--max-out-len 100 \  # Maximum number of tokens generated
--max-seq-len 2048 \  # Maximum sequence length the model can accept
--batch-size 8 \  # Batch size
--no-batch-padding \  # Don't enable batch padding, infer through for loop to avoid performance loss
--num-gpus 1  # Number of minimum required GPUs
```

> **Note**<br />
> To run the command above, you will need to remove the comments starting from `# ` first.

Through the command line or configuration files, OpenCompass also supports evaluating APIs or custom models, as well as more diversified evaluation strategies. Please read the [Quick Start](https://opencompass.readthedocs.io/en/latest/get_started/quick_start.html) to learn how to run an evaluation task.

<p align="right"><a href="#top">🔝Back to top</a></p>

## 📖 Dataset Support

<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Language</b>
      </td>
      <td>
        <b>Knowledge</b>
      </td>
      <td>
        <b>Reasoning</b>
      </td>
      <td>
        <b>Examination</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
<details open>
<summary><b>Word Definition</b></summary>

- WiC
- SummEdits

</details>

<details open>
<summary><b>Idiom Learning</b></summary>

- CHID

</details>

<details open>
<summary><b>Semantic Similarity</b></summary>

- AFQMC
- BUSTM

</details>

<details open>
<summary><b>Coreference Resolution</b></summary>

- CLUEWSC
- WSC
- WinoGrande

</details>

<details open>
<summary><b>Translation</b></summary>

- Flores
- IWSLT2017

</details>

<details open>
<summary><b>Multi-language Question Answering</b></summary>

- TyDi-QA
- XCOPA

</details>

<details open>
<summary><b>Multi-language Summary</b></summary>

- XLSum

</details>
      </td>
      <td>
<details open>
<summary><b>Knowledge Question Answering</b></summary>

- BoolQ
- CommonSenseQA
- NaturalQuestions
- TriviaQA

</details>
      </td>
      <td>
<details open>
<summary><b>Textual Entailment</b></summary>

- CMNLI
- OCNLI
- OCNLI_FC
- AX-b
- AX-g
- CB
- RTE
- ANLI

</details>

<details open>
<summary><b>Commonsense Reasoning</b></summary>

- StoryCloze
- COPA
- ReCoRD
- HellaSwag
- PIQA
- SIQA

</details>

<details open>
<summary><b>Mathematical Reasoning</b></summary>

- MATH
- GSM8K

</details>

<details open>
<summary><b>Theorem Application</b></summary>

- TheoremQA
- StrategyQA
- SciBench

</details>

<details open>
<summary><b>Comprehensive Reasoning</b></summary>

- BBH

</details>
      </td>
      <td>
<details open>
<summary><b>Junior High, High School, University, Professional Examinations</b></summary>

- C-Eval
- AGIEval
- MMLU
- GAOKAO-Bench
- CMMLU
- ARC
- Xiezhi

</details>

<details open>
<summary><b>Medical Examinations</b></summary>

- CMB

</details>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Understanding</b>
      </td>
      <td>
        <b>Long Context</b>
      </td>
      <td>
        <b>Safety</b>
      </td>
      <td>
        <b>Code</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
<details open>
<summary><b>Reading Comprehension</b></summary>

- C3
- CMRC
- DRCD
- MultiRC
- RACE
- DROP
- OpenBookQA
- SQuAD2.0

</details>

<details open>
<summary><b>Content Summary</b></summary>

- CSL
- LCSTS
- XSum
- SummScreen

</details>

<details open>
<summary><b>Content Analysis</b></summary>

- EPRSTMT
- LAMBADA
- TNEWS

</details>
      </td>
      <td>
<details open>
<summary><b>Long Context Understanding</b></summary>

- LEval
- LongBench
- GovReports
- NarrativeQA
- Qasper

</details>
      </td>
      <td>
<details open>
<summary><b>Safety</b></summary>

- CivilComments
- CrowsPairs
- CValues
- JigsawMultilingual
- TruthfulQA

</details>
<details open>
<summary><b>Robustness</b></summary>

- AdvGLUE

</details>
      </td>
      <td>
<details open>
<summary><b>Code</b></summary>

- HumanEval
- HumanEvalX
- MBPP
- APPs
- DS1000

</details>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

## OpenCompass Ecosystem

<p align="right"><a href="#top">🔝Back to top</a></p>

## 📖 Model Support

<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Open-source Models</b>
      </td>
      <td>
        <b>API Models</b>
      </td>
      <!-- <td>
        <b>Custom Models</b>
      </td> -->
    </tr>
    <tr valign="top">
      <td>

- [InternLM](https://github.com/InternLM/InternLM)
- [LLaMA](https://github.com/facebookresearch/llama)
- [Vicuna](https://github.com/lm-sys/FastChat)
- [Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
- [Baichuan](https://github.com/baichuan-inc)
- [WizardLM](https://github.com/nlpxucan/WizardLM)
- [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)
- [ChatGLM3](https://github.com/THUDM/ChatGLM3-6B)
- [TigerBot](https://github.com/TigerResearch/TigerBot)
- [Qwen](https://github.com/QwenLM/Qwen)
- [BlueLM](https://github.com/vivo-ai-lab/BlueLM)
- ...

</td>
<td>

- OpenAI
- Claude
- ZhipuAI(ChatGLM)
- Baichuan
- ByteDance(YunQue)
- Huawei(PanGu)
- 360
- Baidu(ERNIEBot)
- MiniMax(ABAB-Chat)
- SenseTime(nova)
- Xunfei(Spark)
- ……

</td>

</tr>
  </tbody>
</table>

<p align="right"><a href="#top">🔝Back to top</a></p>

## 🔜 Roadmap

- [ ] Subjective Evaluation
  - [ ] Release CompassAreana
  - [ ] Subjective evaluation dataset.
- [x] Long-context
  - [ ] Long-context evaluation with extensive datasets.
  - [ ] Long-context leaderboard.
- [ ] Coding
  - [ ] Coding evaluation leaderboard.
  - [x] Non-python language evaluation service.
- [ ] Agent
  - [ ] Support various agenet framework.
  - [ ] Evaluation of tool use of the LLMs.
- [x] Robustness
  - [x] Support various attack method

## 👷‍♂️ Contributing

We appreciate all contributions to improving OpenCompass. Please refer to the [contributing guideline](https://opencompass.readthedocs.io/en/latest/notes/contribution_guide.html) for the best practice.

## 🤝 Acknowledgements

Some code in this project is cited and modified from [OpenICL](https://github.com/Shark-NLP/OpenICL).

Some datasets and prompt implementations are modified from [chain-of-thought-hub](https://github.com/FranxYao/chain-of-thought-hub) and [instruct-eval](https://github.com/declare-lab/instruct-eval).

## 🖊️ Citation

```bibtex
@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished = {\url{https://github.com/open-compass/opencompass}},
    year={2023}
}
```

<p align="right"><a href="#top">🔝Back to top</a></p>