File size: 20,323 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import json
import os
import os.path as osp
import re
import subprocess
from collections import defaultdict
from typing import List, Optional

import numpy as np
from datasets import Dataset

from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET

from .base import BaseDataset


def load_experiment(file: str) -> dict:
    """Load single experiment file with solutions."""
    with open(file, 'r') as f:
        notebook = json.load(f)
        example = notebook['cells']
        metadata = notebook['metadata']
        modules = metadata.get('modules', [])
        if modules:
            # these two annotations should be the same
            assert len(modules) == len(metadata.get('step_types'))
            # reformat annotations
            modules = [[_m.strip() for _m in _modules.split('&')]
                       for _modules in modules]
        questions = []
        source_codes = []
        outputs = []
        tags = []
        for cell in example:
            if cell['cell_type'] == 'markdown':
                text = ''.join(cell['source']).strip()
                if modules:
                    _modules = modules.pop(0)
                    text += f"Please use {' and '.join(_modules)} modules."
                text = text.strip() + '\n'
                # append the formatted text
                questions.append(text)
            elif cell['cell_type'] == 'code':
                source_codes.append(''.join(cell['source']))
                if cell['outputs'] and 'data' in cell['outputs'][-1]:
                    if 'image/png' in cell['outputs'][-1]['data']:
                        # skip vis temporarily due to lack of evaluation
                        tags.append('vis')
                        outputs.append(
                            cell['outputs'][-1]['data']['image/png'])
                    elif 'text/plain' in cell['outputs'][-1]['data']:
                        tags.append('general')
                        outputs.append(''.join(
                            cell['outputs'][-1]['data']['text/plain']))
                else:
                    tags.append('exec')
                    outputs.append(None)
    return dict(
        experiment=file,
        questions=sum(([
            dict(role='user', content=question),
            dict(role='assistant', content=source_code)
        ] for question, source_code in zip(questions, source_codes)), []),
        references=dict(outputs=outputs,
                        tags=tags,
                        metadata=metadata,
                        experiment=file),
    )


def load_experiment_template(file: str) -> dict:
    """Load single experiment file with solutions for template experiment."""
    with open(file, 'r') as f:
        notebook = json.load(f)
        example = notebook['cells']
        metadata = notebook['metadata']
        modules = metadata.get('modules', [])
        if modules:
            # these two annotations should be the same
            assert len(modules) == len(metadata.get('step_types'))
            # reformat annotations
            modules = [[_m.strip() for _m in _modules.split('&')]
                       for _modules in modules]
        questions = []
        source_codes = []
        outputs = []
        tags = []
        for cell in example:
            if cell['cell_type'] == 'markdown':
                text = ''.join(cell['source']).strip()
                if modules:
                    _modules = modules.pop(0)
                    if 'chinese' not in file:
                        text += f"Please use {' and '.join(_modules)} modules."
                    else:
                        text += f"请用 {' 和 '.join(_modules)} 模块."
                text = text.strip() + '\n'
                # append the formatted text
                questions.append(text)
            elif cell['cell_type'] == 'code':
                source_codes.append(''.join(cell['source']))
                output_flag = False
                if cell['outputs']:
                    for _output in cell['outputs']:
                        if _output['output_type'] == 'display_data':
                            assert not output_flag
                            if 'image/png' in _output['data']:
                                output_flag = True
                                tags.append('vis')
                                outputs.append(_output['data']['image/png'])
                    for _output in cell['outputs'][::-1]:
                        if output_flag:
                            break
                        if _output['output_type'] == 'stream' and _output[
                                'name'] == 'stdout':
                            assert not output_flag
                            output_flag = True
                            tags.append('general')
                            outputs.append(''.join(_output['text']))
                        elif _output['output_type'] == 'execute_result':
                            assert not output_flag
                            output_flag = True
                            tags.append('general')
                            outputs.append(''.join(
                                _output['data']['text/plain']))
                if not output_flag:
                    # no output fallback to exec
                    tags.append('exec')
                    outputs.append(None)
    return dict(
        experiment=file,
        questions=sum(([
            dict(role='user', content=question),
            dict(role='assistant', content=source_code)
        ] for question, source_code in zip(questions, source_codes)), []),
        references=dict(outputs=outputs,
                        tags=tags,
                        metadata=metadata,
                        experiment=file),
    )


def check_internet():
    """A tricky way to check internet."""
    import socket

    import nltk
    socket.setdefaulttimeout(10)
    ret = nltk.download('stopwords', quiet=True)
    socket.setdefaulttimeout(None)
    if not ret:
        raise ConnectionError('CIBench needs internet to get response. Please'
                              'check your internet and proxy.')


@LOAD_DATASET.register_module()
class CIBenchDataset(BaseDataset):
    """Code Interpreter dataset."""

    @staticmethod
    def load(path: str, internet_check: bool = False):
        """Load whole dataset.

        Args:
            path(str): Path of cibench dataset.
            internet_check(bool): Whether to check internet.
                Defaults to False.
        """
        if internet_check:
            check_internet()
        assert os.path.exists(path), f'Path {path} does not exist.'
        data_list = []
        for cwd, dirs, files in os.walk(path):
            dirs.sort()
            files.sort()
            for f in files:
                if '.ipynb' in f:
                    data = load_experiment(os.path.join(cwd, f))
                    data_list.append(data)

        dataset = Dataset.from_list(data_list)
        return dataset


@LOAD_DATASET.register_module()
class CIBenchTemplateDataset(BaseDataset):
    """Code Interpreter dataset for template dataset."""

    @staticmethod
    def load(path: str, internet_check: bool = False):
        """Load whole dataset.

        Args:
            path(str): Path of cibench dataset.
            internet_check(bool): Whether to check internet.
                Defaults to False.
        """
        if internet_check:
            check_internet()
        assert os.path.exists(path), f'Path {path} does not exist.'
        data_list = []
        for cwd, dirs, files in os.walk(path):
            dirs.sort()
            files.sort()
            for f in files:
                if '.ipynb' in f:
                    data = load_experiment_template(os.path.join(cwd, f))
                    data_list.append(data)

        dataset = Dataset.from_list(data_list)
        return dataset


class CIBenchEvaluator(BaseEvaluator):
    """Evaluator for CI dataset.

    Args:
        text_evaluator (optional, dict): The text evaluator for text result
            comparison[]. Defaults to None, which use Rouge as defaults.
            Please notice that a extra key for `metric_name` should be set
            to get the exact metric result, such as `rouge1`.
        output_dir (optional, str): The directory to save experiment
            files in a markdown or notebook format.
        with_ipynb (bool): Generate ipynb correspondingly.
            Defaults to False.
        user_data_dir (str): The directory to load local files.
            Defaults to 'ENV', which means use environment variable
            `USER_DATA_DIR` to get the data dir.
    """

    def __init__(self,
                 text_evaluator: Optional[dict] = None,
                 output_dir: Optional[str] = None,
                 with_ipynb: bool = False,
                 user_data_dir: str = 'ENV') -> None:
        if text_evaluator is None:
            from opencompass.openicl.icl_evaluator import RougeEvaluator
            self.text_evaluator = ICL_EVALUATORS.build(
                dict(type=RougeEvaluator))
            self.text_eval_metric = 'rouge1'
        else:
            self.text_eval_metric = text_evaluator.pop('metric_name')
            self.text_evaluator = ICL_EVALUATORS.build(text_evaluator)
        # TODO: should use work dir for this task.
        self.output_dir = output_dir
        self.user_data_dir = self.check_user_data_dir(user_data_dir)
        self.with_ipynb = with_ipynb
        self.TAG_MAPPING = {
            'exec': ('executable', self.valid_step),
            'general': ('general_correct', self.correct_step),
            'num': ('numeric_correct', self.correct_step),
            'text': ('text_score', self.text_step),
            'vis': ('vis_sim', self.vis_similarity_step),
        }

    def check_user_data_dir(self, user_data_dir):
        if user_data_dir == 'ENV':
            default_path = osp.abspath('./data/cibench_dataset/datasources')
            user_data_dir = os.environ.get('USER_DATA_DIR', default_path)
        user_data_dir = user_data_dir.rstrip('/')
        basename = osp.basename(user_data_dir)
        if basename and basename != 'data':
            user_data_dir = osp.join(user_data_dir, 'data')
            assert osp.exists(user_data_dir), \
                f'a subfolder named `data` should exist under {user_data_dir}.'
        elif basename:
            assert osp.exists(user_data_dir), \
                f'{user_data_dir} does not exist.'
        return user_data_dir

    @staticmethod
    def valid_step(step):
        """Whether the step is executable and valid."""
        # Found the latest code interpreter to determine valid
        for action in step[::-1]:
            if action['type'] == 'IPythonInterpreter':
                if action['errmsg']:
                    return False
                else:
                    return True
        # No code interpreter for this step, reckon as False
        return False

    @staticmethod
    def correct_step(step, target):
        """Whether the step output is correct."""
        # Found the latest code interpreter to determine correct
        for action in step[::-1]:
            if action['type'] == 'IPythonInterpreter':
                if action['result']:
                    try:
                        pred = action['result']['text']
                        match_exec = re.search(
                            'execute_result:\n\n```\n(.*?)\n```', pred,
                            re.DOTALL)
                        match_stdout = re.search('stdout:\n\n```\n(.*?)\n```',
                                                 pred, re.DOTALL)
                        # get pred result from execute_result by default
                        # else stdout
                        if match_exec and match_stdout:
                            match = match_exec
                        elif match_exec:
                            match = match_exec
                        elif match_stdout:
                            match = match_stdout
                        else:
                            match = None
                        if match:
                            out = match.group(1)
                            score = (out.strip() == target.strip()
                                     or target.strip() in out.strip())
                            return score
                    except Exception:
                        return False
        # Fall back to False
        return False

    def text_step(self, step, target):
        """Whether the step output is correct."""
        # Found the latest code interpreter to determine correct
        for action in step[::-1]:
            if action['type'] == 'IPythonInterpreter':
                if action['result']:
                    try:
                        pred = action['result']['text']
                        match = re.search('```\n(.*?)\n```', pred, re.DOTALL)
                        if match:
                            out = match.group(1)
                            score = self.text_evaluator.score([out], [target])
                            return score[self.text_eval_metric] / 100
                    except Exception:
                        return False
        # Fall back to False
        return False

    @staticmethod
    def vis_similarity_step(step, target):
        """Whether the step output image has the same structure similarity with
        the given images."""
        # Found the latest code interpreter to determine correct
        import base64

        import skimage

        for action in step[::-1]:
            if action['type'] == 'IPythonInterpreter':
                if action['result']:
                    try:
                        pred = action['result']['text']
                        match = re.search(r'!\[fig-[0-9]*\]\((.*?)\)', pred,
                                          re.DOTALL)
                        if match:
                            img_pred = match.group(1)
                        img2 = base64.b64decode(target)
                        img2 = skimage.io.imread(img2, plugin='imageio')
                        img1 = skimage.io.imread(img_pred, plugin='imageio')
                        img1 = skimage.transform.resize(img1, img2.shape[:2])
                        img1 = 255 * img1
                        # Convert to integer data type pixels.
                        img1 = img1.astype(np.uint8)
                        ssim = skimage.metrics.structural_similarity(
                            img1, img2, channel_axis=-1)
                        # mse = skimage.metrics.mean_squared_error(img1, img2)
                        # ssim greater better
                        # mse smaller better but has no upper bound
                        return ssim
                    except Exception:
                        return 0
        # Fall back to 0
        return 0

    def save_results(self, origin_prompt, steps):
        """Save the prediction result in a markdown and notebook format."""

        def check_jupytext():
            """Check requirements existence."""
            from shutil import which

            assert which('jupytext'), (
                "Please install jupytext use 'pip install jupytext' to ensure"
                'the conversion processes.')

        check_jupytext()
        p_list = []
        from opencompass.lagent.actions.ipython_interpreter import extract_code
        for idx, (example_origin_prompt,
                  example_steps) in enumerate(zip(origin_prompt, steps)):
            markdown_lines = []
            for prompt, step in zip(example_origin_prompt, example_steps):
                for action in step[::-1]:
                    if action['type'] == 'IPythonInterpreter':
                        valid_action = action
                        break
                    # fall back to final action
                    valid_action = step[-1]
                markdown_lines.append(prompt)
                markdown_lines.append('\n')
                code_text = valid_action['args']['text']
                code_text = extract_code(code_text)
                code_text = '```python\n' + code_text + '\n```'
                markdown_lines.append(code_text)
                markdown_lines.append('\n')

            md_file = f'experiment{idx}.md'
            with open(md_file, 'w') as f:
                f.writelines(markdown_lines)

            # TODO: be careful for this
            # The result might be different with infer process
            # please check carefully
            # convert markdown to ipynb and exectue with error tolerance
            if self.with_ipynb:
                p = subprocess.Popen(
                    'jupytext --to ipynb --pipe-fmt ipynb '
                    "--pipe 'jupyter nbconvert --to ipynb --execute "
                    f"--allow-errors --stdin --stdout' {md_file}",
                    shell=True)
                p_list.append(p)
        # TODO: async wait
        for p in p_list:
            p.wait()

    def set_data_dir(self, work_dir):
        """Set work directory and link data files for save notebook results."""
        if self.user_data_dir:
            basename = osp.basename(self.user_data_dir)

            if not osp.exists(osp.join(self.output_dir, basename)):
                os.symlink(self.user_data_dir,
                           osp.join(self.output_dir, basename))
        os.chdir(work_dir)

    def unset_data_dir(self, work_dir):
        """Change work directory and keep the symlink."""
        os.chdir(work_dir)

    def single_exp(self, gold, steps):
        tags = gold['tags']
        outputs = gold['outputs']
        metadata = gold['metadata']
        hard_tags = metadata.get('step_types', [])
        if hard_tags:
            tags = hard_tags

        # executable: exec succeed
        # general_correct: general correct
        # numeric_correct: numerical correct
        # text_score: text score
        # vis_sim: visual similarity

        # create empty results
        result = dict()
        if hard_tags:
            check_tags = ['exec', 'num', 'text', 'vis']
        else:
            check_tags = ['exec', 'general', 'vis']
        for tag in check_tags:
            key = self.TAG_MAPPING[tag][0]
            result[key] = []

        for tag, step, output in zip(tags, steps, outputs):
            # check whether this step is valid
            result['executable'].append(self.valid_step(step))
            if tag != 'exec':
                key, func = self.TAG_MAPPING[tag]
                result[key].append(func(step, output))

        return result

    def get_output_dir(self):
        """Get output dir from eval task.

        Notice: output dir should be in format xxx/data.
        All the needed files should be
        """
        # hard hack for get output dir from eval task
        if hasattr(self, '_out_dir') and self.output_dir is None:
            self.output_dir = self._out_dir

    def score(self, predictions: List, references: List, steps: List,
              origin_prompt: List):
        """Calculate accuracy."""
        if len(steps) != len(references):
            return {'error': 'steps and refrs have different length'}
        cwd = os.getcwd()
        self.get_output_dir()
        if self.output_dir:
            if not osp.exists(self.output_dir):
                os.makedirs(self.output_dir)
            self.set_data_dir(self.output_dir)
            self.save_results(origin_prompt, steps)
            self.unset_data_dir(cwd)

        total_results = defaultdict(float)
        total_scores = defaultdict(float)
        total_nums = defaultdict(int)
        for gold, single_steps in zip(references, steps):
            result = self.single_exp(gold, single_steps)

            for k, v in result.items():
                total_scores[k] += sum(v)
                total_nums[k] += len(v)

        for k, v in total_scores.items():
            if total_nums[k] > 0:
                total_results[k] = total_scores[k] / total_nums[k] * 100
            else:
                total_results[k] = -1

        return total_results