File size: 1,428 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from typing import List

from datasets import Dataset

from opencompass.openicl import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET

from ..base import BaseDataset
from .utils import iter_jsonl


@LOAD_DATASET.register_module()
class InfiniteBenchendiaDataset(BaseDataset):

    @staticmethod
    def load(path: str):

        dataset = list(iter_jsonl(path))

        raw_data = []
        for item in dataset:
            context = item['context']
            question = item['input']
            answer = item['answer']
            raw_data.append({
                'context': context,
                'question': question,
                'answer': answer
            })
        dataset = Dataset.from_list(raw_data)
        return dataset


@ICL_EVALUATORS.register_module()
class InfiniteBenchendiaEvaluator(BaseEvaluator):

    def score(self, predictions: List, references: List) -> dict:
        score = 0.
        for i in range(len(predictions)):
            prediction = predictions[i]
            reference = references[i][0]
            for c in ['\n', ':', '"', "'", '.', ',', '?', '!', '{', '}']:
                prediction = prediction.replace(c, ' ')
            words = prediction.split()
            words = [x.upper() for x in words]
            if reference in words:
                score += 1

        score = score / len(predictions) * 100
        return {'score': score}