File size: 13,752 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
# flake8: noqa
import ast
import json
import os
import pandas as pd
import tiktoken
from tqdm import tqdm
from .constructions import ChatGPTSchema, ResultsForHumanSchema
from .utils import extract_answer, read_jsonl, save_jsonl
# define the datasets
medbench_multiple_choices_sets = ['Med-Exam', 'DDx-basic', 'DDx-advanced', 'DDx-advanced', 'SafetyBench'] # 选择题,用acc判断
medbench_qa_sets = ['MedHC', 'MedMC', 'MedDG', 'MedSpeQA', 'MedTreat', 'CMB-Clin'] # 开放式QA,有标答
medbench_cloze_sets = ['MedHG'] # 限定域QA,有标答
medbench_single_choice_sets = ['DrugCA'] # 正确与否判断,有标答
medbench_ie_sets = ['DBMHG', 'CMeEE', 'CMeIE', 'CHIP-CDEE', 'CHIP-CDN', 'CHIP-CTC', 'SMDoc', 'IMCS-V2-MRG'] # 判断识别的实体是否一致,用F1评价
def convert_zero_shot(line, dataset_name):
# passage = line['passage'] if line['passage'] is not None else ''
# if dataset_name in medbench_qa_sets:
# return line['question']
# elif dataset_name in medbench_cloze_sets:
# return '问题:' + line['question'] + '\n答案:'
# elif dataset_name in medbench_multiple_choices_sets:
# return '问题:' + line['question'] + ' ' \
# + '选项:' + ' '.join(line['options']) + '\n从A到G,我们应该选择'
# else:
# return line['question']
return line['question']
prefix = '该问题为单选题,所有选项中必有一个正确答案,且只有一个正确答案。\n'
# def convert_zero_shot_CoT_stage1(line, dataset_name):
# try:
# passage = line['passage'] if line['passage'] is not None else ''
# if dataset_name in english_qa_datasets:
# return passage + 'Q: ' + line['question'] + ' ' \
# + 'Answer Choices: ' + ' '.join(line['options']) + '\n' + \
# "Let's think step by step."
# elif dataset_name in chinese_qa_datasets:
# option_string = 'ABCDEFG'
# count = len(line['options'])
# if count == 1:
# count = 4
# return passage + '问题:' + line['question'] + ' ' \
# + '选项:' + ' '.join(line['options']) + '\n' + \
# '从A到{}, 我们应选择什么?让我们逐步思考:'.format(option_string[count - 1])
# elif dataset_name in english_cloze_datasets:
# return passage + 'Q: ' + line['question'] + '\n' \
# "A: Let's think step by step."
# elif dataset_name in chinese_cloze_datasets:
# return passage + '问题:' + line['question'] + '\n' \
# '答案:让我们逐步思考:'
# except NameError:
# print('Dataset not defined.')
# process few-shot raw_prompts
def combine_prompt(prompt_path,
dataset_name,
load_explanation=True,
chat_mode=False):
skip_passage = False
if dataset_name == 'sat-en-without-passage':
skip_passage = True
dataset_name = 'sat-en'
demostrations = []
# read the prompts by context and explanation
context_row = [0, 1, 3, 5, 7, 9]
explanation_row = [0, 2, 4, 6, 8, 10]
raw_prompts_context = pd.read_csv(prompt_path,
header=0,
skiprows=lambda x: x not in context_row,
keep_default_na=False)
raw_prompts_explanation = pd.read_csv(
prompt_path,
header=0,
skiprows=lambda x: x not in explanation_row,
keep_default_na=False).replace(r'\n\n', '\n', regex=True)
contexts = []
for line in list(raw_prompts_context[dataset_name]):
if line:
# print(line)
contexts.append(ast.literal_eval(line))
explanations = [
exp for exp in raw_prompts_explanation[dataset_name] if exp
]
for idx, (con, exp) in enumerate(zip(contexts, explanations)):
passage = con['passage'] if con[
'passage'] is not None and not skip_passage else ''
question = con['question']
options = con['options'] if con['options'] is not None else ''
label = con['label'] if con['label'] is not None else ''
answer = con[
'answer'] if 'answer' in con and con['answer'] is not None else ''
if dataset_name in qa_datasets:
question_input = '问题 {}. '.format(idx + 1) + passage + ' ' + question + '\n' \
+ '从以下选项中选择: ' + ' '.join(options) + '\n'
question_output = (('问题 {}的解析: '.format(idx + 1) + exp + '\n') if load_explanation else '') \
+ '答案是 {}'.format(label)
elif dataset_name in cloze_datasets:
question_input = '问题 {}. '.format(idx + 1) + question + '\n'
question_output = (('问题 {}的解析: '.format(idx + 1) + exp + '\n') if load_explanation else '') \
+ '答案是 {}'.format(answer)
else:
raise ValueError(
f'During loading few-sot examples, found unknown dataset: {dataset_name}'
)
if chat_mode:
demostrations.append((question_input, question_output))
else:
demostrations.append(question_input + question_output + '\n')
return demostrations
enc = None
def _lazy_load_enc():
global enc
if enc is None:
enc = tiktoken.encoding_for_model('gpt-4')
# cut prompt if reach max token length
def concat_prompt(demos,
dataset_name,
max_tokens,
end_of_example='\n',
verbose=False):
_lazy_load_enc()
demostration_en = 'Here are the answers for the problems in the exam.\n'
demostration_zh = '以下是考试中各个问题的答案。\n'
for i in range(len(demos)):
# print(len(enc.encode(demostration_en)), len(enc.encode(demostration_zh)))
if dataset_name in english_qa_datasets:
demostration_en = demostration_en + demos[i] + end_of_example
elif dataset_name in chinese_qa_datasets:
demostration_zh = demostration_zh + demos[i] + end_of_example
elif dataset_name in english_cloze_datasets:
demostration_en = demostration_en + demos[i] + end_of_example
elif dataset_name in chinese_cloze_datasets:
demostration_zh = demostration_zh + demos[i] + end_of_example
# break if reach max token limit
if len(enc.encode(demostration_en)) < max_tokens and len(
enc.encode(demostration_zh)) < max_tokens:
output = demostration_en if len(demostration_en) > len(
demostration_zh) else demostration_zh
prompt_num = i + 1
else:
break
if verbose:
print('max_tokens set as ', max_tokens, 'actual_tokens is',
len(enc.encode(output)), 'num_shot is', prompt_num)
return output, prompt_num
def concat_prompt_chat_mode(demos,
dataset_name,
max_tokens,
end_of_example='\n',
verbose=False):
_lazy_load_enc()
answers = []
sentences = ''
for i in range(len(demos)):
answers += [
{
'role': 'user',
'content': demos[i][0]
},
{
'role': 'assistant',
'content': demos[i][1]
},
]
sentences += json.dumps(answers[-1])
# break if reach max token limit
if len(enc.encode(sentences)) > max_tokens:
answers.pop()
answers.pop()
break
if verbose:
print('max_tokens set as ', max_tokens, 'actual_tokens is',
len(enc.encode(sentences)), 'num_shot is',
len(answers) // 2)
return answers, len(answers) // 2
def convert_few_shot(line, dataset_name, demo, n_shot, chat_mode=False):
passage = line['passage'] if line['passage'] is not None else ''
question = line['question']
options = line['options'] if line['options'] is not None else ''
if dataset_name in qa_datasets:
question_input = '问题 {}. '.format(n_shot + 1) + passage + ' ' + question + '\n' \
+ '从以下选项中选择: ' + ' '.join(options) + '\n'
# + "问题 {}的解析: ".format(n_shot + 1)
if dataset_name in cloze_datasets:
question_input = '问题 {}. '.format(n_shot + 1) + question + '\n'
# + "问题 {}的解析: ".format(n_shot + 1)
if chat_mode:
return demo + [
{
'role': 'user',
'content': question_input
},
]
else:
return demo + question_input
def load_dataset(dataset_name,
setting_name,
parent_path,
prompt_path=None,
max_tokens=None,
end_of_example='\n',
chat_mode=False,
verbose=False):
test_path = os.path.join(parent_path, dataset_name + '.jsonl')
loaded_jsonl = read_jsonl(test_path)
processed = []
if setting_name == 'few-shot-CoT' or setting_name == 'few-shot':
# process demo once if it is few-shot-CoT
processed_demos = combine_prompt(
prompt_path,
dataset_name,
load_explanation=setting_name == 'few-shot-CoT',
chat_mode=chat_mode)
if chat_mode:
chosen_prompt, n_shot = concat_prompt_chat_mode(processed_demos,
dataset_name,
max_tokens,
end_of_example,
verbose=verbose)
else:
chosen_prompt, n_shot = concat_prompt(processed_demos,
dataset_name,
max_tokens,
end_of_example,
verbose=verbose)
if verbose:
loaded_jsonl = tqdm(loaded_jsonl)
for meta_idx, line in enumerate(loaded_jsonl):
# 正确
if setting_name == 'zero-shot':
ctxt = convert_zero_shot(line, dataset_name)
elif setting_name == 'zero-shot-CoT':
ctxt = convert_zero_shot_CoT_stage1(line, dataset_name)
elif setting_name == 'few-shot-CoT' or setting_name == 'few-shot':
ctxt = convert_few_shot(line, dataset_name, chosen_prompt, n_shot,
chat_mode)
try:
new_instance = ChatGPTSchema(context=ctxt, metadata=meta_idx)
processed.append(new_instance.to_dict())
except NameError:
print('Dataset not defined.')
return processed
def generate_second_stage_input(dataset_name,
input_list,
output_list,
with_format_prompt=False):
try:
chinese_format_prompt = '根据以上内容,你的任务是把最终的答案提取出来并填在【】中,例如【0】或者【A】。'
if dataset_name in qa_datasets:
prompt_suffix = '因此,从A到D, 我们应选择'
if with_format_prompt:
prompt_suffix = chinese_format_prompt + prompt_suffix
elif dataset_name in cloze_datasets:
prompt_suffix = '因此,答案是'
if with_format_prompt:
prompt_suffix = chinese_format_prompt + prompt_suffix
except NameError:
print('Dataset not defined.')
processed = []
for i in range(len(input_list)):
ctxt = '{0}\n{1}\n{2}'.format(input_list[i]['context'],
extract_answer(output_list[i]),
prompt_suffix)
new_instance = ChatGPTSchema(context=ctxt,
metadata=input_list[i]['metadata'])
processed.append(new_instance.to_dict())
return processed
def load_dataset_as_result_schema(dataset_name, parent_path):
test_path = os.path.join(parent_path, dataset_name + '.jsonl')
loaded_jsonl = read_jsonl(test_path)
processed = []
for i, line in enumerate(loaded_jsonl):
problem_input = convert_zero_shot(line, dataset_name)
processed.append(
ResultsForHumanSchema(
index=i,
problem_input=problem_input,
# label=line['label'] if line['label'] else line['answer']
label = line['answer']
))
return processed
if __name__ == '__main__':
# set variables
parent_dir = '../../data/exam_guidance'
# set dataset name to process
setting_name = 'zero-shot' # setting_name can be chosen from ["zero-shot", "zero-shot-CoT", "few-shot-CoT"]
data_name = 'health_exam'
save_dir = '../../experiment_input/{}/'.format(setting_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
processed_data = load_dataset(data_name,
setting_name,
parent_dir,
prompt_path=raw_prompt_path,
max_tokens=2048)
save_jsonl(processed_data,
os.path.join(save_dir, '{}.jsonl'.format(data_name)))
|