File size: 6,162 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import inspect
from abc import abstractmethod
from copy import deepcopy
from typing import Dict, List, Optional

from mmengine.config import ConfigDict

from opencompass.utils import (dataset_abbr_from_cfg, get_logger,
                               model_abbr_from_cfg, task_abbr_from_cfg)


class BasePartitioner:
    """Base class for partitioners. A partitioner is responsible for
    partitioning the config into tasks.

    Args:
        out_dir (str): The output directory of tasks.
        keep_keys (Optional[List[str]], optional): The keys to be kept from the
            experiment config to the task config. Defaults to None. If None,
            the following keys will be kept:

            - eval.runner.task.judge_cfg
            - eval.runner.task.dump_details
    """

    def __init__(self, out_dir: str, keep_keys: Optional[List[str]] = None):
        self.logger = get_logger()
        self.out_dir = out_dir
        if keep_keys is None:
            self.keep_keys = [
                'eval.runner.task.judge_cfg',
                'eval.runner.task.dump_details',
            ]
        else:
            self.keep_keys = keep_keys

    def __call__(self, cfg: ConfigDict) -> List[Dict]:
        """Generate tasks from config. Each task is defined as a
        dict and will run independently as a unit. Its structure is as
        follows:

        .. code-block:: python

            {
                'models': [],  # a list of model configs
                'datasets': [[]],  # a nested list of dataset configs, each
                                    list corresponds to a model
                'work_dir': '',  # the work dir
            }

        Args:
            cfg (ConfigDict): The config dict, containing "models", "dataset"
                and "work_dir" keys.

        Returns:
            List[Dict]: A list of tasks.
        """
        cfg = deepcopy(cfg)

        work_dir = cfg['work_dir']

        add_cfg = {}
        for k in self.keep_keys:
            try:
                key_chain = k.split('.')
                ori_ptr = cfg
                tgt_ptr = add_cfg
                for key in key_chain[:-1]:
                    ori_ptr = ori_ptr[key]
                    if key not in tgt_ptr:
                        tgt_ptr[key] = {}
                    tgt_ptr = tgt_ptr[key]
                tgt_ptr[key_chain[-1]] = ori_ptr[key_chain[-1]]
            except Exception:
                self.logger.debug(f'Key {k} not found in config, ignored.')
        self.logger.debug(f'Additional config: {add_cfg}')

        model_and_dataset_args = self.parse_model_dataset_args(cfg)

        tasks = self.partition(**model_and_dataset_args,
                               work_dir=work_dir,
                               out_dir=self.out_dir,
                               add_cfg=add_cfg)

        self.logger.info(f'Partitioned into {len(tasks)} tasks.')
        for i, task in enumerate(tasks):
            self.logger.debug(f'Task {i}: {task_abbr_from_cfg(task)}')

        return tasks

    def parse_model_dataset_args(self, cfg: ConfigDict):
        models = cfg['models']
        datasets = cfg['datasets']

        sig = inspect.signature(self.partition)
        if 'model_dataset_combinations' in sig.parameters:
            combs = cfg.get('model_dataset_combinations', None)
            if combs is None:
                combs = [{'models': models, 'datasets': datasets}]
            else:
                # sanity check
                model_abbrs = [model_abbr_from_cfg(model) for model in models]
                dataset_abbrs = [
                    dataset_abbr_from_cfg(dataset) for dataset in datasets
                ]
                for comb in combs:
                    for model in comb['models']:
                        if model_abbr_from_cfg(model) not in model_abbrs:
                            raise ValueError(
                                f'Model {model_abbr_from_cfg(model)} '
                                'not found in config.')
                    for dataset in comb['datasets']:
                        if dataset_abbr_from_cfg(dataset) not in dataset_abbrs:
                            raise ValueError(
                                f'Dataset {dataset_abbr_from_cfg(dataset)} '
                                'not found in config.')
            used_kwargs = {'model_dataset_combinations': combs}
        else:
            if cfg.get('model_dataset_combinations', None) is not None:
                self.logger.warning(
                    'model_dataset_combinations is not supported by '
                    f'{self.__class__.__name__}. Ignored.')
            used_kwargs = {'models': models, 'datasets': datasets}
        return used_kwargs

    @abstractmethod
    def partition(self,
                  models: List[ConfigDict],
                  datasets: List[ConfigDict],
                  work_dir: str,
                  out_dir: str,
                  add_cfg: Dict = {}) -> List[Dict]:
        """Partition model-dataset pairs into tasks. Each task is defined as a
        dict and will run independently as a unit. Its structure is as
        follows:

        .. code-block:: python

            {
                'models': [],  # a list of model configs
                'datasets': [[]],  # a nested list of dataset configs, each
                                    list corresponds to a model
                'work_dir': '',  # the work dir
                **add_cfg  # other keys to be added in the config
            }

        Args:
            models (List[ConfigDict]): A list of model configs.
            datasets (List[ConfigDict]): A list of dataset configs.
            work_dir (str): The work dir for the task.
            out_dir (str): The full output path for the task, intended for
                Partitioners to check whether the task is finished via the
                existency of result file in this directory.
            add_cfg (dict): Other common keys to be added in the task config,
                used to share the same config among tasks. Defaults to {}.

        Returns:
            List[Dict]: A list of tasks.
        """