File size: 21,958 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
import json
import os.path as osp
import sys
from datasets import Dataset
from sklearn.metrics import classification_report
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET

from ..base import BaseDataset
from .math_equivalence import is_equiv
from .post_process import parse_math_answer, parse_qa_multiple_answer

import evaluate
from nltk.translate.bleu_score import sentence_bleu
# # from bert_score import score
import re
from transformers import BasicTokenizer
from rouge_chinese import Rouge
basic_tokenizer = BasicTokenizer(tokenize_chinese_chars=True)

@LOAD_DATASET.register_module()
class MedBenchDataset(BaseDataset):

    @staticmethod
    def load(path: str, name: str, setting_name: str):
        from .dataset_loader import load_dataset, load_dataset_as_result_schema

        assert setting_name in 'zero-shot', 'only support zero-shot setting'
        dataset_wo_label = load_dataset(name, setting_name, path)
        dataset_with_label = load_dataset_as_result_schema(name, path)
        dataset = []
        for d1, d2 in zip(dataset_wo_label, dataset_with_label):
            dataset.append({
                'id': d2.index,
                'problem_input': d1['context'],
                'label': d2.label,
            })
        dataset = Dataset.from_list(dataset)
        return dataset


@ICL_EVALUATORS.register_module()
class MedBenchEvaluator(BaseEvaluator):

    def score(self, predictions, references):
        # predictions: [[]]
        # references: [[]]
        predictions = [parse_qa_multiple_answer(pred) for pred in predictions]
        details = []
        cnt = 0
        for pred, ref in zip(predictions, references):
            detail = {'pred': pred, 'answer': ref, 'correct': False}
            if is_equiv(pred, ref):
                cnt += 1
                detail['correct'] = True
            details.append(detail)
        score = cnt / len(predictions) * 100
        return {'Accuracy': score, 'details': details}

def process_generated_results_CMeEE(pred_file):
    #   实体每类占一行,每行格式为 "[类型名称]实体:实体名称1,实体名称2,实体名称3\n"
    #                多个实体,用 ,符号分割
    structured_output = []
    answer_choices = ['药物', '设备', '医院科室', '微生物类', '身体部位', '医疗操作', '医学检验项目', '症状', '疾病']
    for pred in pred_file:
        list_entities = []
        for choice in answer_choices:
            for piece in re.split('\n', pred):
                if piece.startswith(f"{choice}"):
                    mentions = re.split(r"[,,]", piece.replace(f"{choice}:", "").replace(f"{choice}:", ""))
                    for ment in mentions:
                        list_entities.append({'type':choice, 'entity':ment})
        structured_output.append(list_entities)
    return structured_output

def process_generated_results_EMR(pred_file):
    structured_output = []
    regex = r"^(主诉|现病史|既往史|个人史|婚育史|家族史)[::]([\s\S]+)$"
    for prediction in pred_file:
        entities: dict = {}
        if "\n\n" in prediction:
            blocks = prediction.split("\n\n")
        else:
            blocks = prediction.splitlines()
        for line in blocks:
            if match := re.match(regex, line.strip()):
                type_ = match[1]
                mention = match[2].strip()
                entities[type_] = mention
        structured_output.append(entities)
    return structured_output

def process_generated_results_CMeIE(pred_file):
    structured_output = []
    for line in pred_file:
        gen_output = line

        answer_choices = "相关(导致)、鉴别诊断、遗传因素、发病性别倾向、相关(症状)、手术治疗、预防、辅助检查、筛查、阶段、临床表现、风险评估因素、同义词、发病年龄、预后生存率、病史、传播途径、治疗后症状、药物治疗、辅助治疗、化疗、死亡率、放射治疗、病因、组织学检查、内窥镜检查、多发群体、并发症、实验室检查、就诊科室、病理生理、高危因素、发病率、多发地区、病理分型、影像学检查、转移部位、发病部位、相关(转化)、外侵部位、预后状况、发病机制、多发季节"
        re_choices = "|".join(re.escape(choice) for choice in answer_choices.split('、'))
        regex = (
        rf'关系[::]["“]({re_choices})["”][,,]'
        r'头实体[::]["“]([^"”]+)["”][,,]尾实体[::]["“]([^"”]+)["”]'
        )

        list_spos = []
        list_answer_strs = gen_output.split("\n")
        for line in list_answer_strs:
            for item in re.finditer(regex, line):
                print(item)
            for match in re.finditer(regex, line):
                list_spos.append({"predicate": match[1], "subject": match[2], "object": match[3]})
                
        structured_output.append(list_spos)
    return structured_output

def process_generated_results_CDN(pred_file):
    structured_output = []
    answer_choices = json.load(open('./opencompass/datasets/medbench/entity_list.jsonl', 'r'))
    for line in pred_file:
        gen_output = line

        answer_str = gen_output.split("\n")[-1]
        answers = answer_str.split(",")
        answers = [w.strip() for w in answers if len(w.strip()) > 0]
        answers = [w for w in answers if w in answer_choices]
        answers = list(set(answers))
        answers = [
            {
                "entity": w,
                "type": "normalization",
            }
            for w in answers
        ]

        structured_output.append(answers)
    return structured_output

def process_generated_results_CDEE(pred_file):
    structured_output = []
    for prediction in pred_file:
        events: list[dict] = []
        for line in prediction.splitlines():
            if "主体词" in line:
                line = line.rstrip("。")
                kvs = line.split(";")
                kv_dict = dict(kv.split(":", maxsplit=1) for kv in kvs if ":" in kv)
                events.append({
                    "主体词": kv_dict.get("主体词", ""),
                    "发生状态": (
                        v
                        if (v := kv_dict.get("发生状态", "不确定")) in ("不确定", "否定")
                        else ""
                    ),
                    "描述词": (
                        v.split(",") if (v := kv_dict.get("描述词", "空")) != "空" else []
                    ),
                    "解剖部位": (
                        v.split(",")
                        if (v := kv_dict.get("解剖部位", "空")) != "空"
                        else []
                    ),
                })
        structured_output.append(events)
    return structured_output

def process_generated_results_CTC(pred_file):
    structured_output = []

    for line in pred_file:
        gen_output = line
        # 答案格式:直接回答分类标签
        answer_str = gen_output.strip()
        structured_output.append(answer_str)
    return structured_output

def process_generated_results_doc_parsing(pred_file):
    float_field_regex = r"(体温|脉搏|心率|收缩压|舒张压|呼吸)[^\d]*(\d+(?:\.\d+)?)"

    output = []
    for prediction in pred_file:
        entities = {
        "体温": "未扪及",
        "脉搏": "未扪及",
        "心率": "未扪及",
        "收缩压": "未扪及",
        "舒张压": "未扪及",
        "呼吸": "未扪及",
        "是否上腹部深压痛": None,
        "是否腹部反跳痛": None,
        "上腹部肿块": None,
    }
        for sentence in re.split("[,|。|\n]", prediction):
            for match in re.finditer(float_field_regex, prediction):
                entities[match[1]] = match[2]
            if "上腹部深压痛" in sentence:
                if re.search("是(?!否)|(?:^|[^不])存在|有", sentence):
                    entities["是否上腹部深压痛"] = "是"
                else:
                    entities["是否上腹部深压痛"] = "否"
            elif "腹部反跳痛" in sentence:
                if re.search("是(?!否)|(?:^|[^不])存在|有", sentence):
                    entities["是否腹部反跳痛"] = "是"
                else:
                    entities["是否腹部反跳痛"] = "否"
            elif "上腹部肿块" in sentence:
                if re.search("是(?!否)|(?:^|[^不])存在|有", sentence):
                    entities["上腹部肿块"] = "扪及"
                else:
                    entities["上腹部肿块"] = "未扪及"
        result = [
            {
                "type": "体温(℃)",
                "entity": entities["体温"],
            },
            {
                "type": "脉搏(次/分)",
                "entity": entities["脉搏"],
            },
            {
                "type": "心率(次/分)",
                "entity": entities["心率"],
            },
            {
                "type": "收缩压(mmHg)",
                "entity": entities["收缩压"],
            },
            {
                "type": "舒张压(mmHg)",
                "entity": entities["舒张压"],
            },
            {
                "type": "呼吸(次/分)",
                "entity": entities["呼吸"],
            },
        ]
        if entities["是否上腹部深压痛"]:
            result.append({
                "type": "是否上腹部深压痛",
                "entity": entities["是否上腹部深压痛"],
            })
        if entities["是否腹部反跳痛"]:
            result.append({
                "type": "是否腹部反跳痛",
                "entity": entities["是否腹部反跳痛"],
            })
        if entities["上腹部肿块"]:
            result.append({
                "type": "上腹部肿块",
                "entity": entities["上腹部肿块"],
            })

        output.append(result)
    return output

def process_generated_results_mrg(pred_file):
    structured_output = []
    regex = r"^(主诉|现病史|辅助检查|既往史|诊断|建议)[::]([\s\S]+)$"
    for prediction in pred_file:
        entities = {}
        if "\n\n" in prediction:
            blocks = prediction.split("\n\n")
        else:
            blocks = prediction.splitlines()
        for line in blocks:
            if match := re.match(regex, line.strip()):
                type_ = match[1]
                mention = match[2].strip()
                entities[type_] = mention
        structured_output.append(entities)
    return structured_output

def calc_info_extract_task_scores(list_structured_predict, list_structured_golden):

    assert len(list_structured_golden) == len(list_structured_predict)

    tp = 0
    fp = 0
    fn = 0
    for samp_golden, samp_predict in zip(list_structured_golden, list_structured_predict):
        # samp_golden: [[{}]]
        answer_golden = samp_golden
        answer_predict = samp_predict
        # assert isinstance(answer_golden, list)
        # assert isinstance(answer_predict, list), "sample format is wrong!"

        set_golden = set()
        for inst in answer_golden:
            assert isinstance(inst, dict)
            keys = sorted(list(inst.keys()))
            inst = tuple([json.dumps(inst[w], ensure_ascii=False) for w in keys ])
            # inst = list(inst.items())
            # inst.sort()
            # inst = tuple(inst)

            set_golden.add(inst)

        set_predict = set()
        for inst in answer_predict:
            assert isinstance(inst, dict)
            keys = sorted(list(inst.keys()))

            inst = tuple([json.dumps(inst[w], ensure_ascii=False) for w in keys])

            set_predict.add(inst)

        tp += len(set_golden.intersection(set_predict))
        fp += len(set_predict.difference(set_golden))
        fn += len(set_golden.difference(set_predict))

    if tp:
        precision = tp / (tp + fp)
        recall = tp / (tp + fn)
        f1 = 2 * precision * recall / (precision + recall)

    else:
        precision, recall, f1 = 0, 0, 0

    return precision, recall, f1

def calc_cls_task_scores(list_structured_golden,
                         list_structured_predict,
                         list_labels=None,
                         return_macro=False,
                         ):
    # types = list_labels
    # scores = {c: {"tp": 0, "fp": 0, "fn": 0, "tn": 0} for c in list_labels + ["ALL"]}

    predictions = []
    ground_truths = []

    # Count GT relations and Predicted relations
    assert len(list_structured_golden) == len(list_structured_predict)
    n_sents = len(list_structured_golden)

    # Count TP, FP and FN per type
    for pred_samp, gt_samp in zip(list_structured_predict, list_structured_golden):

        pred_label = pred_samp
        gt_label = gt_samp
        # assert gt_label != ""
        if gt_label == "":
            get_label = list_labels[0]
        if pred_label == "":
            pred_label = list_labels[0]

        predictions.append(pred_label)
        ground_truths.append(gt_label)

    # metric
    cls_report = classification_report(
        ground_truths, predictions,
        output_dict=True,
        zero_division=0,
    )

    if return_macro:
        return cls_report["macro avg"]["precision"], \
               cls_report["macro avg"]["recall"], \
               cls_report["macro avg"]["f1-score"]
    else:
        return cls_report["weighted avg"]["precision"], \
               cls_report["weighted avg"]["recall"], \
               cls_report["weighted avg"]["f1-score"]

def calc_nlg_task_scores(list_structured_golden, list_structured_predict):

    assert len(list_structured_golden) == len(list_structured_predict)

    scores = []
    predictions = []
    references = []
    details = []
    for samp_golden, samp_predict in zip(list_structured_golden, list_structured_predict):

        answer_golden = samp_golden
        answer_predict = samp_predict

        if not (answer_predict and answer_golden):
            continue

        # basic tokenizer: 拆分中文字,保留英文单词
        answer_predict = basic_tokenizer.tokenize(answer_predict)
        answer_golden = basic_tokenizer.tokenize(answer_golden)
        answer_predict = " ".join(answer_predict).strip()
        answer_golden = " ".join(answer_golden).strip()
        if answer_golden.strip() == "":
            answer_golden = "无 。"
        if answer_predict.strip() == "":
            answer_predict = "无 。"

        predictions.append(answer_predict)
        references.append(answer_golden)

        details.append({'pred':answer_predict, 'answer':answer_golden, 'correct':False})

    rouge = Rouge()
    # bleu = evaluate.load('sacrebleu')
    scores = rouge.get_scores(predictions, references, avg=True)
    # scores_bleu = bleu.compute(predictions=predictions, references=references)

    rouge1 = scores["rouge-1"]["f"]
    rouge2 = scores["rouge-2"]["f"]
    rougeL = scores["rouge-l"]["f"]

    # bleu = sentence_bleu(references, predictions)

    # bert_score = []
    # for id in range(len(predictions)):
    #     P, R, F1 = score([predictions[i]], [references[i]], model_type='bert-base-chinese', lang="zh", verbose=True)
    #     bert_score.append(F1)
    # bert_score = float(sum(bert_score)) / float(len(bert_score))
    # return rougeL, bleu, bert_score
    return {'RougeL': rougeL, 'details':details}

def calc_scores_f1(dict_gt, dict_pred):
        details = []
        for gt, pred in zip(dict_gt, dict_pred):
            details.append({'pred':pred, 'answer':gt, 'correct':None})
        
        precision, recall, f1 = calc_info_extract_task_scores(dict_gt, dict_pred)
        return {'F1':f1, 'details':details}

def calc_scores_ctc(dict_gt, dict_pred):
    details = []
    for gt, pred in zip(dict_gt, dict_pred):
        details.append({'pred':pred, 'answer':gt, 'correct':None})

    gts = dict_gt
    preds = dict_pred
    
    precision, recall, f1 = calc_cls_task_scores(
        gts,
        preds,
        list_labels=['非上述类型', '疾病', '症状(患者感受)',
                    '体征(医生检测)', '怀孕相关', '肿瘤进展',
                    '疾病分期', '过敏耐受', '器官组织状态',
                    '预期寿命', '口腔相关', '药物',
                    '治疗或手术', '设备', '护理',
                    '诊断', '实验室检查', '风险评估',
                    '受体状态', '年龄', '特殊病人特征',
                    '读写能力', '性别', '教育情况',
                    '居住情况', '种族', '知情同意',
                    '参与其它试验', '研究者决定', '能力',
                    '伦理审查', '依存性', '成瘾行为',
                    '睡眠', '锻炼', '饮食', '酒精使用',
                    '性取向', '吸烟状况', '献血',
                    '病例来源', '残疾群体', '健康群体',
                    '数据可及性', "含有多个类别"],
        return_macro=True,
    )
    return {'Macro-F1':f1, 'details':details}
    
def calc_scores_nlg(dict_gt, dict_pred):
    
        # scores = {}
        scores = {'score':0, 'details':[]}
        success_flag = 1

        gts = dict_gt
        preds = dict_pred
        # if not len(gts) == len(preds):
        #     success_flag = 0
        # try:
        return calc_nlg_task_scores(gts, preds)    

@ICL_EVALUATORS.register_module()
class MedBenchEvaluator_CMeEE(BaseEvaluator):

    def score(self, predictions, references):
        predictions = process_generated_results_CMeEE(predictions)
        return calc_scores_f1(predictions, references)

@ICL_EVALUATORS.register_module()
class MedBenchEvaluator_DBMHG(BaseEvaluator):

    def score(self, predictions, references):
        predictions = process_generated_results_EMR(predictions)
        return calc_scores_f1(predictions, references)

@ICL_EVALUATORS.register_module()
class MedBenchEvaluator_IMCS_V2_MRG(BaseEvaluator):

    def score(self, predictions, references):
        # predictions = process_generated_results_mrg(predictions)
        references_revise = []
        for item in references:
            temp_ref = ''
            for sub_item in item:
                temp_ref += sub_item['type'] + ':' + sub_item['entity'] + '\n'
            references_revise.append(temp_ref)
        return calc_nlg_task_scores(references_revise, predictions)

@ICL_EVALUATORS.register_module()
class MedBenchEvaluator_CMeIE(BaseEvaluator):

    def score(self, predictions, references):
        predictions = process_generated_results_CMeIE(predictions)
        return calc_scores_f1(predictions, references)

@ICL_EVALUATORS.register_module()
class MedBenchEvaluator_CHIP_CDEE(BaseEvaluator):

    def score(self, predictions, references):
        predictions = process_generated_results_CDEE(predictions)
        return calc_scores_f1(predictions, references)

@ICL_EVALUATORS.register_module()
class MedBenchEvaluator_CHIP_CDN(BaseEvaluator):

    def score(self, predictions, references):
        predictions = process_generated_results_CDN(predictions)
        return calc_scores_f1(predictions, references)

@ICL_EVALUATORS.register_module()
class MedBenchEvaluator_CHIP_CTC(BaseEvaluator):

    def score(self, predictions, references):
        predictions = process_generated_results_CTC(predictions)
        return calc_scores_ctc(predictions, references)

@ICL_EVALUATORS.register_module()
class MedBenchEvaluator_Doc_parsing(BaseEvaluator):

    def score(self, predictions, references):
        # predictions = process_generated_results_doc_parsing(predictions)
        references_revise = []
        for item in references:
            temp_ref = ''
            for sub_item in item:
                temp_ref += sub_item['type'] + ':' + sub_item['entity'] + '\n'
            references_revise.append(temp_ref)
        return calc_nlg_task_scores(references_revise, predictions)

@ICL_EVALUATORS.register_module()
class MedBenchEvaluator_NLG(BaseEvaluator):

    def score(self, predictions, references):
        # predictions = process_generated_results_med(predictions)
        return calc_scores_nlg(predictions, references)

@ICL_EVALUATORS.register_module()
class MedBenchEvaluator_Cloze(BaseEvaluator):

    def score(self, predictions, references):
        # predictions: [[]]
        # references: [[]]
        # predictions = [parse_qa_multiple_answer(pred) for pred in predictions]
        details = []
        cnt = 0

        for pred, ref in zip(predictions, references):
            detail = {'pred':pred, 'answer':ref, 'correct':False}
            
            if sum([item in pred for item in ref]) == len(ref):
                cnt += 1
                detail['correct'] = True
            details.append(detail)
        score = cnt / len(predictions) * 100
        return {'Accuracy': score, 'details': details}

@ICL_EVALUATORS.register_module()
class MedBenchEvaluator_TF(BaseEvaluator):

    def score(self, predictions, references):
        # predictions: [[]]
        # references: [[]]
        # predictions = [parse_qa_multiple_answer(pred) for pred in predictions]
        details = []
        cnt = 0

        for pred, ref in zip(predictions, references):
            
            if '不' in pred or '否' in pred:
                cur_pred = '不可以'
            else:
                cur_pred = '可以'

            detail = {'pred':cur_pred, 'answer':ref, 'correct':False}

            if cur_pred == ref:
                cnt += 1
                detail['correct'] = True
            
            details.append(detail)

        score = cnt / len(predictions) * 100
        return {'Accuracy': score, 'details': details}