File size: 8,576 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import copy
from typing import Dict, List
from lagent.actions import ActionExecutor
from lagent.agents.react import ReAct as _ReAct
from lagent.agents.react import ReActProtocol as _ReActProtocol
from lagent.schema import ActionReturn, ActionStatusCode, AgentReturn
class ReActProtocol(_ReActProtocol):
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
# defaults to system
self.system_role = 'system'
self.first_system_role = 'system'
self.merge_adjacent_role = False
def format(self,
chat_history: List[Dict],
inner_step: List[Dict],
action_executor: ActionExecutor,
force_stop: bool = False) -> list:
"""Generate the ReAct format prompt.
Args:
chat_history (List[Dict]): The history log in previous runs.
inner_step (List[Dict]): The log in the current run.
action_executor (ActionExecutor): the action manager to
execute actions.
force_stop (boolean): whether force the agent to give responses
under pre-defined turns.
Returns:
List[Dict]: ReAct format prompt.
"""
call_protocol = self.call_protocol.format(
tool_description=action_executor.get_actions_info(),
action_names=action_executor.action_names(),
thought=self.thought['begin'],
action=self.action['begin'],
action_input=self.action_input['begin'],
response=self.response['begin'],
finish=self.finish['begin'],
)
formatted = []
formatted.append(
dict(role=self.first_system_role, content=call_protocol))
formatted += chat_history
formatted += inner_step
if force_stop:
formatted.append(
dict(role=self.system_role, content=self.force_stop))
if self.merge_adjacent_role and formatted:
merged = [formatted[0]] # Add the first dict
for d in formatted[1:]:
# If the 'role' of current dict matches with the 'role' of the
# last dict in merged list,
# append its 'content' to the 'content' of the last dict.
if d['role'] == merged[-1]['role']:
merged[-1]['content'] += d['content']
else:
# If 'role' does not match, add it as a new dict in the
# merged list
merged.append(d)
return merged
return formatted
class ReAct(_ReAct):
def __init__(self,
use_system_role: bool = True,
first_system_role: bool = True,
merge_adjacent_role: bool = False,
**kwargs) -> None:
super().__init__(**kwargs)
if use_system_role:
self.system_role = 'system'
else:
self.system_role = 'user'
if use_system_role or first_system_role:
first_system_role = 'system'
else:
first_system_role = 'user'
self._protocol.first_system_role = first_system_role
self._protocol.system_role = self.system_role
self._protocol.merge_adjacent_role = merge_adjacent_role
def chat(self, message: str) -> AgentReturn:
for hist in self._session_history:
if hist['role'] == 'system':
hist['role'] = self.system_role
self._inner_history = []
self._inner_history.append(dict(role='user', content=message))
agent_return = AgentReturn()
default_response = 'Sorry that I cannot answer your question.'
for turn in range(self.max_turn):
prompt = self._protocol.format(
chat_history=self.session_history,
inner_step=self._inner_history,
action_executor=self._action_executor,
force_stop=(turn == self.max_turn - 1))
response = self._llm.generate_from_template(prompt, 512)
self._inner_history.append(dict(role='assistant',
content=response))
thought, action, action_input = self._protocol.parse(
response, self._action_executor)
action_return: ActionReturn = self._action_executor(
action, action_input)
action_return.thought = thought
agent_return.actions.append(action_return)
if action_return.type == self._action_executor.finish_action.name:
agent_return.response = action_return.result['text']
break
self._inner_history.append(
dict(role=self.system_role,
content=self._protocol.format_response(action_return)))
else:
agent_return.response = default_response
agent_return.inner_steps = copy.deepcopy(self._inner_history)
# only append the user and final response
self._session_history.append(dict(role='user', content=message))
self._session_history.append(
dict(role='assistant', content=agent_return.response))
return agent_return
class CIReAct(ReAct):
"""Code Interpreter version of ReAct. The success state is different from
ReAct.
Args:
llm (BaseModel or BaseAPIModel): a LLM service which can chat
and act as backend.
action_executor (ActionExecutor): an action executor to manage
all actions and their response.
protocol (ReActProtocol): a wrapper to generate prompt and
parse the response from LLM / actions.
max_turn (int): the maximum number of trails for LLM to generate
plans that can be successfully parsed by ReWOO protocol.
"""
def reset(self):
"""Reset history and reset action if suit the case."""
self._session_history = []
# hard code here
from opencompass.lagent.actions.ipython_interpreter import \
IPythonInterpreter
b = IPythonInterpreter()
b.reset()
def chat(self, message: str) -> AgentReturn:
for hist in self._session_history:
if hist['role'] == 'system':
hist['role'] = self.system_role
self._inner_history = []
# append the user message for session history
self._session_history.append(dict(role='user', content=message))
agent_return = AgentReturn()
force_stop = False
default_response = '对不起,我无法回答你的问题'
for turn in range(self.max_turn):
prompt = self._protocol.format(
chat_history=self.session_history,
inner_step=self._inner_history,
action_executor=self._action_executor,
force_stop=force_stop)
response = self._llm.generate_from_template(prompt, 512)
self._inner_history.append(dict(role='assistant',
content=response))
thought, action, action_input = self._protocol.parse(
response, self._action_executor)
action_return: ActionReturn = self._action_executor(
action, action_input)
action_return.thought = thought
agent_return.actions.append(action_return)
if action_return.state == ActionStatusCode.SUCCESS:
# if success, stash model response and system response
self._session_history.append(
dict(role='assistant', content=response))
self._session_history.append(
dict(
role=self.system_role,
content=self._protocol.format_response(action_return)))
agent_return.response = action_return.result['text']
return agent_return
elif action_return.type == self._action_executor.invalid_action.name: # noqa
action_return.errmsg = 'The action is invalid, please check the action name.' # noqa
self._inner_history.append(
dict(role=self.system_role,
content=self._protocol.format_response(action_return)))
if turn == self.max_turn - 1:
force_stop = True
agent_return.response = default_response
self._session_history.append(
dict(role='assistant', content=agent_return.response))
return agent_return
|