File size: 4,163 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union

from opencompass.registry import MODELS
from opencompass.utils import PromptList

from ..base_api import BaseAPIModel

PromptType = Union[PromptList, str]


@MODELS.register_module()
class Claude(BaseAPIModel):
    """Model wrapper around Claude API.

    Args:
        key (str): Authorization key.
        path (str): The model to be used. Defaults to claude-2.
        query_per_second (int): The maximum queries allowed per second
            between two consecutive calls of the API. Defaults to 1.
        max_seq_len (int): Unused here.
        meta_template (Dict, optional): The model's meta prompt
            template if needed, in case the requirement of injecting or
            wrapping of any meta instructions.
        retry (int): Number of retires if the API call fails. Defaults to 2.
    """

    def __init__(
        self,
        key: str,
        path: str = 'claude-2',
        query_per_second: int = 2,
        max_seq_len: int = 2048,
        meta_template: Optional[Dict] = None,
        retry: int = 2,
    ):
        super().__init__(path=path,
                         max_seq_len=max_seq_len,
                         query_per_second=query_per_second,
                         meta_template=meta_template,
                         retry=retry)
        try:
            from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic
        except ImportError:
            raise ImportError('Import anthropic failed. Please install it '
                              'with "pip install anthropic" and try again.')

        self.anthropic = Anthropic(api_key=key)
        self.model = path
        self.human_prompt = HUMAN_PROMPT
        self.ai_prompt = AI_PROMPT

    def generate(
        self,
        inputs: List[str or PromptList],
        max_out_len: int = 512,
    ) -> List[str]:
        """Generate results given a list of inputs.

        Args:
            inputs (List[str or PromptList]): A list of strings or PromptDicts.
                The PromptDict should be organized in OpenCompass'
                API format.
            max_out_len (int): The maximum length of the output.

        Returns:
            List[str]: A list of generated strings.
        """
        with ThreadPoolExecutor() as executor:
            results = list(
                executor.map(self._generate, inputs,
                             [max_out_len] * len(inputs)))
        return results

    def _generate(
        self,
        input: str or PromptList,
        max_out_len: int = 512,
    ) -> str:
        """Generate results given an input.

        Args:
            inputs (str or PromptList): A string or PromptDict.
                The PromptDict should be organized in OpenCompass'
                API format.
            max_out_len (int): The maximum length of the output.

        Returns:
            str: The generated string.
        """
        assert isinstance(input, (str, PromptList))

        if isinstance(input, str):
            messages = f'{self.human_prompt} {input}{self.ai_prompt}'
        else:
            messages = ''
            for item in input:
                if item['role'] == 'HUMAN' or item['role'] == 'SYSTEM':
                    messages += f'{self.human_prompt} {item["prompt"]}'
                elif item['role'] == 'BOT':
                    messages += f'{self.ai_prompt} {item["prompt"]}'
            if not messages.endswith(self.ai_prompt):
                messages += self.ai_prompt

        num_retries = 0
        while num_retries < self.retry:
            self.wait()
            try:
                completion = self.anthropic.completions.create(
                    model=self.model,
                    max_tokens_to_sample=max_out_len,
                    prompt=messages)
                return completion.completion
            except Exception as e:
                self.logger.error(e)
            num_retries += 1
        raise RuntimeError('Calling Claude API failed after retrying for '
                           f'{self.retry} times. Check the logs for details.')