File size: 6,891 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union

import requests

from opencompass.utils.prompt import PromptList

from .base_api import BaseAPIModel

PromptType = Union[PromptList, str]


class SenseTime(BaseAPIModel):
    """Model wrapper around SenseTime.

    Args:
        path (str): The name of SenseTime model.
            e.g. `nova-ptc-xl-v1`
        key (str): Authorization key.
        query_per_second (int): The maximum queries allowed per second
            between two consecutive calls of the API. Defaults to 1.
        max_seq_len (int): Unused here.
        meta_template (Dict, optional): The model's meta prompt
            template if needed, in case the requirement of injecting or
            wrapping of any meta instructions.
        retry (int): Number of retires if the API call fails. Defaults to 2.
    """

    def __init__(
        self,
        path: str,
        url: str,
        key: str = 'ENV',
        query_per_second: int = 2,
        max_seq_len: int = 2048,
        meta_template: Optional[Dict] = None,
        retry: int = 2,
        parameters: Optional[Dict] = None,
    ):
        super().__init__(path=path,
                         max_seq_len=max_seq_len,
                         query_per_second=query_per_second,
                         meta_template=meta_template,
                         retry=retry)

        if isinstance(key, str):
            self.keys = os.getenv('SENSENOVA_API_KEY') if key == 'ENV' else key
        else:
            self.keys = key

        self.headers = {
            'Content-Type': 'application/json',
            'Authorization': f'Bearer {self.keys}'
        }
        self.url = url
        self.model = path
        self.params = parameters

    def generate(
        self,
        inputs: List[str or PromptList],
        max_out_len: int = 512,
    ) -> List[str]:
        """Generate results given a list of inputs.

        Args:
            inputs (List[str or PromptList]): A list of strings or PromptDicts.
                The PromptDict should be organized in OpenCompass'
                API format.
            max_out_len (int): The maximum length of the output.

        Returns:
            List[str]: A list of generated strings.
        """
        with ThreadPoolExecutor() as executor:
            results = list(
                executor.map(self._generate, inputs,
                             [max_out_len] * len(inputs)))
        self.flush()
        return results

    def _generate(
        self,
        input: str or PromptList,
        max_out_len: int = 512,
    ) -> str:
        """Generate results given an input.

        Args:
            inputs (str or PromptList): A string or PromptDict.
                The PromptDict should be organized in OpenCompass'
                API format.
            max_out_len (int): The maximum length of the output.

        Returns:
            str: The generated string.
        """
        assert isinstance(input, (str, PromptList))

        if isinstance(input, str):
            messages = [{'role': 'user', 'content': input}]
        else:
            messages = []
            for item in input:
                msg = {'content': item['prompt']}
                if item['role'] == 'HUMAN':
                    msg['role'] = 'user'
                elif item['role'] == 'BOT':
                    msg['role'] = 'assistant'

                messages.append(msg)

        data = {'messages': messages, 'model': self.model}
        data.update(self.params)

        stream = data['stream']

        max_num_retries = 0
        while max_num_retries < self.retry:
            self.acquire()

            max_num_retries += 1
            raw_response = requests.request('POST',
                                            url=self.url,
                                            headers=self.headers,
                                            json=data)
            requests_id = raw_response.headers['X-Request-Id']  # noqa
            self.release()

            if not stream:
                response = raw_response.json()

                if response is None:
                    print('Connection error, reconnect.')
                    # if connect error, frequent requests will casuse
                    # continuous unstable network, therefore wait here
                    # to slow down the request
                    self.wait()
                    continue
                if raw_response.status_code == 200:
                    msg = response['data']['choices'][0]['message']
                    return msg

                if (raw_response.status_code != 200):
                    if response['error']['code'] == 18:
                        # security issue
                        return 'error:unsafe'
                    if response['error']['code'] == 17:
                        return 'error:too long'
                    else:
                        print(raw_response.text)
                        time.sleep(1)
                        continue
            else:
                # stream data to msg
                raw_response.encoding = 'utf-8'

                if raw_response.status_code == 200:
                    response_text = raw_response.text
                    data_blocks = response_text.split('data:')
                    data_blocks = data_blocks[1:]

                    first_block = json.loads(data_blocks[0])
                    if first_block['status']['code'] != 0:
                        msg = f"error:{first_block['status']['code']},"
                        f" {first_block['status']['message']}"
                        self.logger.error(msg)
                        return msg

                    msg = ''
                    for i, part in enumerate(data_blocks):
                        # print(f'process {i}: {part}')
                        try:
                            if part.startswith('[DONE]'):
                                break

                            json_data = json.loads(part)
                            choices = json_data['data']['choices']
                            for c in choices:
                                delta = c.get('delta')
                                msg += delta
                        except json.decoder.JSONDecodeError as err:
                            print(err)
                            self.logger.error(f'Error decoding JSON: {part}')
                    return msg

                else:
                    print(raw_response.text,
                          raw_response.headers.get('X-Request-Id'))
                    time.sleep(1)
                    continue

        return ''
        raise RuntimeError(
            f'request id: '
            f'{raw_response.headers.get("X-Request-Id")}, {raw_response.text}')