File size: 4,657 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import random
import re

import torch


class MiniGPT4MMBenchPostProcessor:
    """"Post processor for MiniGPT-4 on MMBench."""

    def __init__(self) -> None:
        pass

    def __call__(self, output_token: torch.tensor, tokenizer) -> str:

        if output_token[0] == 0:
            output_token = output_token[1:]
        if output_token[0] == 1:
            output_token = output_token[1:]
        output_text = tokenizer.decode(output_token,
                                       add_special_tokens=False)  # noqa
        output_text = self._extract_key_words(output_text)
        return output_text

    def _extract_key_words(self, output_text: str) -> str:

        output_text = output_text.split('###')[0]
        output_text = output_text.split('Assistant:')[-1].strip()
        output_text = output_text.strip('</s><s>')
        output_text = output_text.strip('</Img>')
        output_text = output_text.strip()
        pattern = re.compile(r'([A-Z]\.)')
        res = pattern.findall(output_text)
        if len(res) > 0:
            output_text = res[0][:-1]
        return output_text


class MiniGPT4COCOCaptionPostProcessor:
    """"Post processor for MiniGPT-4 on COCO Caption."""

    def __init__(self) -> None:
        pass

    def __call__(self, output_token: torch.tensor, tokenizer) -> str:

        if output_token[0] == 0:
            output_token = output_token[1:]
        if output_token[0] == 1:
            output_token = output_token[1:]
        output_text = tokenizer.decode(output_token,
                                       add_special_tokens=False)  # noqa
        output_text = output_text.split('###')[0]
        output_text = output_text.split('Assistant:')[-1].strip()
        output_text = output_text.split('. ')[0]
        output_text = output_text.strip('<Img>')
        output_text = output_text.strip()
        return output_text


class MiniGPT4ScienceQAPostProcessor:
    """"Post processor for MiniGPT-4 on ScienceQA."""

    def __init__(self) -> None:
        pass

    def __call__(self, output_token: torch.tensor, tokenizer) -> str:

        if output_token[0] == 0:
            output_token = output_token[1:]
        if output_token[0] == 1:
            output_token = output_token[1:]
        output_text = tokenizer.decode(output_token,
                                       add_special_tokens=False)  # noqa
        output_text = output_text.split('###')[0]
        output_text = output_text.split('Assistant:')[-1].strip()
        pattern = re.compile(r'\(([A-Z])\)')
        output_text = pattern.findall(output_text)
        if len(output_text) == 0:
            output_text = random.choice(['A', 'B', 'C', 'D'])
        else:
            output_text = output_text[0]
        return output_text


class MiniGPT4VQAPostProcessor:
    """"Post processor for MiniGPT-4 on VQA."""

    def __init__(self) -> None:
        pass

    def __call__(self, output_token: torch.tensor, tokenizer) -> str:

        if output_token[0] == 0:
            output_token = output_token[1:]
        if output_token[0] == 1:
            output_token = output_token[1:]
        output_text = tokenizer.decode(output_token,
                                       add_special_tokens=False)  # noqa
        output_text = output_text.split('###')[0]
        output_text = output_text.split('Assistant:')[-1].strip()
        return output_text


class MiniGPT4VSRPostProcessor:
    """"Post processor for MiniGPT-4 on VSR."""

    def __init__(self) -> None:
        pass

    def __call__(self, output_token: torch.tensor, tokenizer) -> str:

        if output_token[0] == 0:
            output_token = output_token[1:]
        if output_token[0] == 1:
            output_token = output_token[1:]
        output_text = tokenizer.decode(output_token, add_special_tokens=False)
        pattern = r'yes|no|Yes|No'
        output_text = re.findall(pattern, output_text)
        if len(output_text) > 0:
            output_text = output_text[0].lower()
        return output_text


class MiniGPT4MMEPostProcessor(MiniGPT4MMBenchPostProcessor):
    """"Post processor for MiniGPT-4 on MME."""

    def __init__(self) -> None:
        super().__init__()

    def __call__(self, output_token: torch.tensor, tokenizer) -> str:
        response = super().__call__(output_token, tokenizer)
        # extract yes or no, copy from MME official evaluation script
        prefix_pred_ans = response[:4].lower()

        if 'yes' in prefix_pred_ans:
            pred_label = 'yes'
        elif 'no' in prefix_pred_ans:
            pred_label = 'no'
        else:
            pred_label = 'other'

        return pred_label