File size: 1,393 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
from opencompass.multimodal.models.llava import LLaVAMMBenchPromptConstructor, LLaVABasePostProcessor
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(
type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
dict(
type='mmpretrain.PackInputs',
algorithm_keys=[
'question', 'category', 'l2-category', 'context', 'index',
'options_dict', 'options', 'split'
],
),
]
dataset = dict(type='opencompass.MMBenchDataset',
data_file='data/mmbench/mmbench_test_20230712.tsv',
pipeline=val_pipeline)
llava_mmbench_dataloader = dict(
batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler', shuffle=False),
)
# model settings
llava_mmbench_model = dict(
type='llava',
model_path='/path/to/llava',
prompt_constructor=dict(type=LLaVAMMBenchPromptConstructor),
post_processor=dict(type=LLaVABasePostProcessor)
) # noqa
# evaluation settings
llava_mmbench_evaluator = [
dict(type='opencompass.DumpResults',
save_path='work_dirs/llava-7b-mmbench.xlsx')
]
|