File size: 1,637 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from opencompass.multimodal.models.visualglm import (VisualGLMBasePostProcessor, VisualGLMBasePromptConstructor)
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.LoadImageFromFile'),
dict(type='mmpretrain.ToPIL', to_rgb=True),
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711)),
dict(type='mmpretrain.PackInputs', algorithm_keys=['image_id'])
]
dataset = dict(type='mmpretrain.COCOCaption',
data_root='data/coco',
data_prefix=dict(img_path='images'),
ann_file='annotations/coco_karpathy_val.json',
pipeline=val_pipeline)
visualglm_coco_caption_dataloader = dict(batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler', shuffle=False))
# model settings
visualglm_coco_caption_model = dict(
type='visualglm',
pretrained_path='/path/to/visualglm', # or Huggingface repo id
is_caption_task=True,
prompt_constructor=dict(type=VisualGLMBasePromptConstructor, system_prompt='Describe the image.'),
post_processor=dict(type=VisualGLMBasePostProcessor)
)
# evaluation settings
visualglm_coco_caption_evaluator = [
dict(
type='mmpretrain.COCOCaption',
ann_file='data/coco/annotations/coco_karpathy_val_gt.json',
) # noqa
]
|