File size: 15,669 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import re
from functools import partial
from typing import Dict, List, Optional, Union

import numpy as np
import torch

from opencompass.models.base import BaseModel, LMTemplateParser
from opencompass.registry import MODELS
from opencompass.utils.prompt import PromptList

PromptType = Union[PromptList, str]


@MODELS.register_module(name=['GLM-130B'])
class GLM130B(BaseModel):

    def __init__(self,
                 pkg_root: str,
                 ckpt_path: str,
                 tokenizer_only: bool = False,
                 meta_template: Optional[Dict] = None,
                 **kwargs):
        assert not tokenizer_only, 'LLama does not support tokenizer only mode'
        self.pkg_root = pkg_root
        self.ckpt_path = ckpt_path
        self._load_model(**kwargs)

        self.template_parser = LMTemplateParser(meta_template)
        self.eos_token_id = None
        if meta_template and 'eos_token_id' in meta_template:
            self.eos_token_id = meta_template['eos_token_id']

    def _load_model(self, **kwargs):
        import sys
        sys.path.insert(0, self.pkg_root)
        from argparse import Namespace

        from evaluation.model import ModelForEvaluation, batch_filling_sequence
        from generate import get_masks_and_position_ids
        from generation import BaseStrategy, BeamSearchStrategy
        from initialize import initialize_model_and_tokenizer
        from SwissArmyTransformer import get_args

        self.get_masks_and_position_ids = get_masks_and_position_ids
        self.batch_filling_sequence = batch_filling_sequence

        kwargs = {
            'bminf': False,
            'bminf_memory_limit': 20,
            'quantization_bit_width': None,
            'from_quantized_checkpoint': False,
            'sequential_initialization': False,
            'sampling_strategy': 'BaseStrategy',
            'min_gen_length': 0,
            'print_all_beams': False,
            **kwargs,
        }

        args_list = [
            ['--seed', '1234'],
            ['--mode', 'inference'],
            ['--out-seq-length', '256'],
            ['--num-beams', '4'],
            ['--length-penalty', '1.0'],
            ['--no-repeat-ngram-size', '3'],
            ['--temperature', '1.0'],
            ['--top_k', '0'],
            ['--top_p', '0'],
            ['--output-path', 'samples'],
            ['--model-parallel-size', '8'],
            ['--num-layers', '70'],
            ['--hidden-size', '12288'],
            ['--inner-hidden-size', '32768'],
            ['--vocab-size', '150528'],
            ['--num-attention-heads', '96'],
            ['--max-sequence-length', '2048'],
            ['--tokenizer-type', 'icetk-glm-130B'],
            ['--layernorm-order', 'post'],
            ['--load', self.ckpt_path],
            ['--skip-init'],
            ['--fp16'],
            ['--input-source', 'interactive'],
        ]  # Come from the default initialize arguments of official repo
        args = get_args(sum(args_list, []))
        args = Namespace(**vars(args), **kwargs)
        args.do_train = False
        self.args = args

        model, tokenizer = initialize_model_and_tokenizer(args)
        self.model = model
        self.model_for_eval = ModelForEvaluation(model)
        self.tokenizer = tokenizer
        self.device = args.device

        end_tokens = [
            tokenizer.get_command('eop'),
            tokenizer.get_command('eos')
        ]
        if args.sampling_strategy == 'BaseStrategy':
            self.strategy = BaseStrategy(batch_size=1,
                                         temperature=args.temperature,
                                         top_k=args.top_k,
                                         top_p=args.top_p,
                                         end_tokens=end_tokens)
        elif args.sampling_strategy == 'BeamSearchStrategy':
            self.strategy = BeamSearchStrategy(
                1,
                args.num_beams,
                length_penalty=args.length_penalty,
                consider_end=True,
                end_tokens=end_tokens,
                no_repeat_ngram_size=args.no_repeat_ngram_size,
                min_gen_length=args.min_gen_length,
            )
        else:
            raise ValueError(f'unknown strategy {args.sampling_strategy}')

        sys.path.pop(0)

    def get_token_len(self, prompt: str) -> int:
        """Get lengths of the tokenized strings.

        Args:
            prompt (str): Input string.

        Returns:
            int: Length of the input tokens
        """
        return len(self.tokenizer.tokenize(prompt))

    def choice(self, inputs, choices):
        import sys
        sys.path.insert(0, self.pkg_root)
        from unittest.mock import MagicMock

        from evaluation.dataset import MultiChoiceTaskDataset
        sys.path.pop(0)

        choice_tokens = [self.tokenizer.tokenize(item) for item in choices]
        is_single_token = all(len(token) == 1 for token in choice_tokens)

        data_items = []
        mock_dataset = MagicMock(is_single_token=is_single_token)
        from mmengine.dist import is_main_process
        for text in inputs:
            if is_main_process():
                print(f"\033[92m'text'\033[0m: {text}")
            data_item = MultiChoiceTaskDataset.build_multiple_choice_sample(
                text=self.tokenizer.tokenize(text),
                #  text=self.tokenizer.tokenize(text) + [20019],
                choices=[self.tokenizer.tokenize(item) for item in choices],
                is_single_token=is_single_token,
            )
            data_items.append(data_item)
        batch = MultiChoiceTaskDataset.collate_fn(mock_dataset, data_items)

        log_probs = self.model_for_eval.cond_log_prob(batch)

        answers = []
        for log_prob in zip(log_probs):
            answers.append(choices[np.argmax(log_prob).item()])

        return answers

    def generate(self, inputs: List[str], max_out_len: int) -> List[str]:
        """Generate results given a list of inputs.

        Args:
            inputs (List[str]): A list of strings.
            max_out_len (int): The maximum length of the output.

        Returns:
            List[str]: A list of generated strings.
        """
        if isinstance(inputs, list):
            return sum((self.generate(raw_text, max_out_len)
                        for raw_text in inputs), [])
        else:
            raw_text = inputs

        from mmengine.dist import is_main_process
        if is_main_process():
            print(f"\033[92m'raw_text'\033[0m: \n{raw_text}")

        # add MASK
        generation_mask = '[gMASK]'
        if '[MASK]' in raw_text:
            generation_mask = '[MASK]'
        elif '[sMASK]' in raw_text:
            generation_mask = '[sMASK]'
        use_gmask = '[MASK]' not in raw_text and '[sMASK]' not in raw_text

        mask_pattern = r'\[[sg]?MASK\]'
        text_list = re.split(mask_pattern, raw_text)
        pattern_list = re.compile(mask_pattern).findall(raw_text)
        seq = []
        for i in range(len(pattern_list)):
            pattern = pattern_list[i]
            sub_text = text_list[i]
            seq.extend(self.tokenizer.tokenize(sub_text))
            seq.append(self.tokenizer.get_command(pattern))

        seq.extend(self.tokenizer.tokenize(text_list[-1]))
        prompt_token_length = len(seq)

        if 'MASK]' not in raw_text:
            seq += [self.tokenizer.get_command(generation_mask)]
            raw_text += ' ' + generation_mask
        if not raw_text.endswith('MASK]'):
            seq = seq + [self.tokenizer.get_command('eos')]
        if len(seq) > self.args.max_sequence_length:
            raise ValueError('text too long.')

        # generation
        output_list = [seq]
        if self.args.sampling_strategy == 'BeamSearchStrategy':
            num_output = self.args.num_beams
        else:
            num_output = 1
        last_pos = [0] * num_output

        # continually detect the first mark position
        while True:
            seq = output_list[0]
            # detect mask position
            mask_token = self.tokenizer.get_command(generation_mask)
            if mask_token not in seq:
                break
            mask_position = seq.index(mask_token)

            output_list = []

            input_seq = torch.cuda.LongTensor(
                [seq + [self.tokenizer.get_command('sop')]],
                device=self.device,
            )
            output, _ = self.batch_filling_sequence(
                self.model,
                input_seq,
                torch.cuda.LongTensor([input_seq.shape[-1]],
                                      device=self.device),
                strategy=self.strategy,
                get_masks_and_position_ids=partial(
                    self.get_masks_and_position_ids,
                    mask_position=mask_position,
                    max_gen_length=max_out_len,
                    gmask=use_gmask,
                ),
            )
            if isinstance(output, torch.Tensor):  # different strategies
                output = output.tolist()
            output = output[0]  # batch_size = 1
            output_list.extend(output)

            # clip -1s and fill back generated things into seq
            for i in range(len(output_list)):
                output = output_list[i].tolist() if isinstance(
                    output_list[i], torch.Tensor) else output_list[i]
                try:
                    unfinished = output.index(-1)
                except ValueError:
                    unfinished = len(output)
                if output[unfinished - 1] in self.strategy.end_tokens:
                    unfinished -= 1
                bog = output.index(self.tokenizer.get_command('sop'))

                last_pos[i] = mask_position + unfinished - (bog + 1)
                output_list[i] = output[:mask_position] + output[
                    bog + 1:unfinished] + output[mask_position + 1:bog]

        # Select the best answer
        output = output_list[0]
        if output[-1] == self.tokenizer.get_command('eos'):
            output = output[:-1]

        # Avoid generate out-of-range id, replace to unk
        output = np.array(output)
        output[output < 20000] = 20000
        output = output.tolist()
        answer = self.tokenizer.detokenize(output[prompt_token_length:])
        if is_main_process():
            print(f"\033[92m'answer'\033[0m: \n{answer}")

        return [answer]

    def get_logits(self, inputs: List[str]):
        mask_id = self.tokenizer.get_command('[MASK]')
        sop_id = self.tokenizer.get_command('sop')

        tokens = []
        targets = []
        position_ids = []
        attn_masks = []
        from mmengine.dist import is_main_process
        for raw_text in inputs:
            mask_pattern = r'\[MASK\]'
            text_list = re.split(mask_pattern, raw_text, 1)

            token = sum([
                self.tokenizer.tokenize(text_list[0]),
                [mask_id, sop_id],
                self.tokenizer.tokenize(text_list[1]),
            ], [])[:-1]
            target = sum([
                self.tokenizer.tokenize(text_list[0]),
                [mask_id],
                self.tokenizer.tokenize(text_list[1]),
            ], [])
            if is_main_process():
                print(f"\033[92m'raw_text'\033[0m: {raw_text}")
                print(f"\033[92m'token'\033[0m: {token}")

            seq_length = len(token)

            attn_mask = np.ones((seq_length, seq_length), dtype=np.int64)

            tokens.append(np.array(token, dtype=np.int64))
            targets.append(np.array(target, dtype=np.int64))
            position_ids.append(np.arange(0, seq_length, dtype=np.int64))
            attn_masks.append(attn_mask)

        TILE = 32
        length_to_pad = (max(map(len, tokens)) + TILE - 1) // TILE * TILE
        token_batch, target_batch, position_id_batch, attention_mask_batch = [], [], [], []  # noqa: E501
        for token, target, position_id, attn_mask in zip(
                tokens, targets, position_ids, attn_masks):
            attn_mask = np.pad(
                attn_mask,
                pad_width=((0, length_to_pad - len(token)), ),
                mode='constant',
                constant_values=0,
            )
            token = np.concatenate(
                (token, np.zeros(length_to_pad - len(token), dtype=np.int64)))
            target = np.concatenate((target,
                                     np.full(length_to_pad - len(target),
                                             -1,
                                             dtype=np.int64)))
            position_id = np.concatenate(
                (position_id,
                 np.zeros(length_to_pad - len(position_id), dtype=np.int64)))

            token_batch.append(token)
            target_batch.append(target)
            position_id_batch.append(position_id)
            attention_mask_batch.append(attn_mask)

        token_batch = torch.tensor(np.array(token_batch),
                                   dtype=torch.int64).to(self.device)
        target_batch = torch.tensor(np.array(target_batch),
                                    dtype=torch.int64).to(self.device)
        position_id_batch = torch.tensor(np.array(position_id_batch),
                                         dtype=torch.int64).to(self.device)
        attention_mask_batch = (torch.tensor(
            np.array(attention_mask_batch), dtype=torch.int64) < 0.5).to(
                self.device).bool().unsqueeze(1)

        logits, *out_per_layers = self.model(token_batch,
                                             position_id_batch,
                                             attention_mask_batch,
                                             log_attention_weights=None)
        if is_main_process():
            print(f"\033[92m'target_batch'\033[0m: {target_batch}")

        return logits, target_batch

    def get_ppl(self,
                inputs: List[str],
                mask_length: Optional[List[int]] = None) -> List[float]:
        """Get perplexity scores given a list of inputs.

        Args:
            inputs (List[str]): A list of strings.
            mask_length (Optional[List[int]]): A list of mask lengths. If
                provided, the perplexity scores will be calculated with the
                first mask_length[i] tokens masked out. It's okay to skip
                its implementation if advanced features in PPLInfernecer is
                not needed.

        Returns:
            List[float]: A list of perplexity scores.
        """
        logits, targets = self.get_logits(inputs)

        loss_fn = torch.nn.CrossEntropyLoss(reduction='none', ignore_index=-1)
        loss = loss_fn(logits.view(-1, logits.size(-1)),
                       targets.view(-1)).view(targets.size())
        from mmengine.dist import is_main_process
        if is_main_process():
            print(f"\033[92m'loss'\033[0m: {loss}")

        if mask_length is not None:
            mask = torch.zeros_like(targets)  # [batch,seqlen]
            for i in range(len(mask)):
                for j in range(mask_length[i] - 1, len(mask[i])):
                    mask[i][j] = 1
            loss = loss * mask

        lens = (targets != -1).sum(-1).cpu().numpy()
        if mask_length is not None:
            lens -= np.array(mask_length)
        ce_loss = loss.sum(-1).cpu().detach().numpy() / lens
        if is_main_process():
            print(f"\033[92m'lens'\033[0m: {lens}")
            print(f"\033[92m'ce_loss'\033[0m: {ce_loss}")
        return ce_loss