File size: 5,783 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union

from opencompass.utils.prompt import PromptList

from .base_api import BaseAPIModel

PromptType = Union[PromptList, str]


class Qwen(BaseAPIModel):
    """Model wrapper around Qwen.

    Documentation:
        https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-thousand-questions/

    Args:
        path (str): The name of qwen model.
            e.g. `qwen-max`
        key (str): Authorization key.
        query_per_second (int): The maximum queries allowed per second
            between two consecutive calls of the API. Defaults to 1.
        max_seq_len (int): Unused here.
        meta_template (Dict, optional): The model's meta prompt
            template if needed, in case the requirement of injecting or
            wrapping of any meta instructions.
        retry (int): Number of retires if the API call fails. Defaults to 2.
    """

    def __init__(self,
                 path: str,
                 key: str,
                 query_per_second: int = 1,
                 max_seq_len: int = 2048,
                 meta_template: Optional[Dict] = None,
                 retry: int = 5,
                 generation_kwargs: Dict = {}):
        super().__init__(path=path,
                         max_seq_len=max_seq_len,
                         query_per_second=query_per_second,
                         meta_template=meta_template,
                         retry=retry,
                         generation_kwargs=generation_kwargs)
        import dashscope
        dashscope.api_key = key
        self.dashscope = dashscope

    def generate(
        self,
        inputs: List[str or PromptList],
        max_out_len: int = 512,
    ) -> List[str]:
        """Generate results given a list of inputs.

        Args:
            inputs (List[str or PromptList]): A list of strings or PromptDicts.
                The PromptDict should be organized in OpenCompass'
                API format.
            max_out_len (int): The maximum length of the output.

        Returns:
            List[str]: A list of generated strings.
        """
        with ThreadPoolExecutor() as executor:
            results = list(
                executor.map(self._generate, inputs,
                             [max_out_len] * len(inputs)))
        self.flush()
        return results

    def _generate(
        self,
        input: str or PromptList,
        max_out_len: int = 512,
    ) -> str:
        """Generate results given an input.

        Args:
            inputs (str or PromptList): A string or PromptDict.
                The PromptDict should be organized in OpenCompass'
                API format.
            max_out_len (int): The maximum length of the output.

        Returns:
            str: The generated string.
        """
        assert isinstance(input, (str, PromptList))
        """
        {
          "messages": [
            {"role":"user","content":"请介绍一下你自己"},
            {"role":"assistant","content":"我是通义千问"},
            {"role":"user","content": "我在上海,周末可以去哪里玩?"},
            {"role":"assistant","content": "上海是一个充满活力和文化氛围的城市"},
            {"role":"user","content": "周末这里的天气怎么样?"}
          ]
        }

        """

        if isinstance(input, str):
            messages = [{'role': 'user', 'content': input}]
        else:
            messages = []
            for item in input:
                msg = {'content': item['prompt']}
                if item['role'] == 'HUMAN':
                    msg['role'] = 'user'
                elif item['role'] == 'BOT':
                    msg['role'] = 'assistant'
                elif item['role'] == 'SYSTEM':
                    msg['role'] = 'system'

                messages.append(msg)
        data = {'messages': messages}
        data.update(self.generation_kwargs)

        max_num_retries = 0
        while max_num_retries < self.retry:
            self.acquire()
            try:
                response = self.dashscope.Generation.call(
                    model=self.path,
                    **data,
                )
            except Exception as err:
                print('Request Error:{}'.format(err))
                time.sleep(1)
                continue

            self.release()

            if response is None:
                print('Connection error, reconnect.')
                # if connect error, frequent requests will casuse
                # continuous unstable network, therefore wait here
                # to slow down the request
                self.wait()
                continue

            if response.status_code == 200:
                try:
                    msg = response.output.text
                    return msg
                except KeyError:
                    print(response)
                    self.logger.error(str(response.status_code))
                    time.sleep(1)
                    continue
            if response.status_code == 429:
                print('Rate limited')
                time.sleep(2)
                continue
            if response.status_code == 400:
                msg = 'Output data may contain inappropriate content.'
                return msg

            if ('Range of input length should be ' in response.message
                    or  # input too long
                    'Input data may contain inappropriate content.'
                    in response.message):  # bad input
                print(response.message)
                return ''
            print(response)
            max_num_retries += 1

        raise RuntimeError(response.message)