File size: 7,395 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
class VisualGLMMMBenchPromptConstructor:
    """MMBench prompt constructor for VisualGLM.

    Args:
        system_prompt (str): System prompt. (Default: '')
        human_prompt (str): Human prompt. (Default: 'Q:')
        assistant_prompt (str): Assistant prompt. (Default: 'A:')
    """

    def __init__(self,
                 system_prompt: str = '',
                 human_prompt: str = 'Q:',
                 assistant_prompt: str = 'A:') -> None:
        self.system_prompt = system_prompt
        self.human_prompt = human_prompt
        self.assistant_prompt = assistant_prompt

    def __call__(self, batch: dict) -> tuple:
        """Construct prompt.

        Args:
            batch (dict): Input data containing image and data_samples.

        Returns:
            A tuple containing images, prompt, data_samples and image_position.
        """

        assert len(batch['inputs']) == 1
        image = batch.pop('inputs')[0].unsqueeze(0)
        data_sample = batch.pop('data_samples')[0]
        img_prompt = '<img></img>'
        if data_sample.get('context') is not None:
            prompt = img_prompt + self.system_prompt + self.human_prompt + data_sample.context + ' ' + data_sample.question + ' ' + data_sample.options  # noqa
        else:
            prompt = img_prompt + self.system_prompt + self.human_prompt + data_sample.question + ' ' + data_sample.options  # noqa
        prompt += self.assistant_prompt
        image_position = prompt.rfind('<img>') + 5

        return image, prompt, data_sample, image_position


class VisualGLMBasePromptConstructor:
    """Base prompt constructor for VisualGLM.

    The prompt will concat <img> and the given system prompt.
    Args:
        system_prompt (str): System prompt. (Default: '')
        human_prompt (str): Human prompt. (Default: 'Q:')
        assistant_prompt (str): Assistant prompt. (Default: 'A:')
    """

    def __init__(self,
                 system_prompt: str = '',
                 human_prompt: str = 'Q:',
                 assistant_prompt: str = 'A:') -> None:
        self.prompt = system_prompt
        self.human_prompt = human_prompt
        self.assistant_prompt = assistant_prompt

    def __call__(self, batch: dict) -> tuple:
        """Construct prompt.

        Args:
            batch (dict): Input data containing image and data_samples.

        Returns:
            A tuple containing images, prompt, data_samples and image_position.
        """

        assert len(batch['inputs']) == 1
        image = batch.pop('inputs')[0].unsqueeze(0)
        data_sample = batch.pop('data_samples')[0]

        # generate text prompt
        prompt = '<img></img>' + self.human_prompt + self.prompt + self.assistant_prompt  # noqa

        image_position = prompt.rfind('<img>') + 5

        return image, prompt, data_sample, image_position


class VisualGLMVQAPromptConstructor(VisualGLMBasePromptConstructor):
    """VQA prompt constructor for VisualGLM.

    The prompt will concat <img>, the question and the system prompt.
    Args:
        system_prompt (str): System prompt. (Default: '')
        human_prompt (str): Human prompt. (Default: 'Q:')
        assistant_prompt (str): Assistant prompt. (Default: 'A:')
    """

    def __init__(self,
                 system_prompt='',
                 human_prompt: str = 'Q:',
                 assistant_prompt: str = 'A:') -> None:
        super().__init__(system_prompt, human_prompt, assistant_prompt)

    def __call__(self, batch: dict) -> tuple:
        """Construct prompt.

        Args:
            batch (dict): Input data containing image and data_samples.

        Returns:
            A tuple containing images, prompt, data_samples and image_position.
        """

        assert len(batch['inputs']) == 1
        image = batch.pop('inputs')[0].unsqueeze(0)
        data_sample = batch.pop('data_samples')[0]

        # generate text prompt
        question = data_sample.get('question')
        prompt = '<img></img>' + self.human_prompt + question + self.prompt
        prompt += '\n' + self.assistant_prompt

        image_position = prompt.rfind('<img>') + 5

        return image, prompt, data_sample, image_position


class VisualGLMScienceQAPromptConstructor(VisualGLMBasePromptConstructor):
    """ScienceQA prompt constructor for VisualGLM.

    The prompt will concat image and all terms in a question.
    Args:
        system_prompt (str): System prompt. (Default: '')
        human_prompt (str): Human prompt. (Default: 'Q:')
        assistant_prompt (str): Assistant prompt. (Default: 'A:')
    """

    choice_mapping = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}

    def __init__(self,
                 system_prompt='',
                 human_prompt: str = 'Q:',
                 assistant_prompt: str = 'A:') -> None:
        super().__init__(system_prompt, human_prompt, assistant_prompt)

    def __call__(self, batch: dict) -> tuple:
        """Construct prompt.

        Args:
            batch (dict): Input data containing image and data_samples.

        Returns:
            A tuple containing images, prompt, data_samples and image_position.
        """

        assert len(batch['inputs']) == 1
        image = batch.pop('inputs')[0].unsqueeze(0)
        data_sample = batch.pop('data_samples')[0]

        questions = 'Question: ' + data_sample.get('question')
        choices = data_sample.get('choices')
        choices = [
            f'({self.choice_mapping[i]}) ' + item
            for i, item in enumerate(choices)
        ]
        choices = 'Choices: ' + ' '.join(choices) + '\n'
        contexts = 'Context: ' + data_sample.get('hint') + '\n'

        # generate text prompt
        prompt = '<img></img>' + self.human_prompt + contexts + questions + choices + self.prompt + self.assistant_prompt  # noqa
        image_position = prompt.rfind('<img>') + 5

        return image, prompt, data_sample, image_position


class VisualGLMIconQAPromptConstructor(VisualGLMBasePromptConstructor):
    """IconQA prompt constructor for VisualGLM.

    The prompt will concat <img>, the question and the system prompt.
    Args:
        system_prompt (str): System prompt. (Default: '')
        human_prompt (str): Human prompt. (Default: 'Q:')
        assistant_prompt (str): Assistant prompt. (Default: 'A:')
    """

    def __init__(self,
                 system_prompt='',
                 human_prompt: str = 'Q:',
                 assistant_prompt: str = 'A:') -> None:
        super().__init__(system_prompt, human_prompt, assistant_prompt)

    def __call__(self, batch: dict) -> tuple:
        """Construct prompt.

        Args:
            batch (dict): Input data containing image and data_samples.

        Returns:
            A tuple containing images, prompt, data_samples and image_position.
        """

        assert len(batch['inputs']) == 1
        image = batch.pop('inputs')[0].unsqueeze(0)
        data_sample = batch.pop('data_samples')[0]

        questions = data_sample.get('question') + '\n'
        choices = data_sample.get('choices')
        choices = 'Options: ' + ', '.join(choices) + '.\n'

        # generate text prompt
        prompt = '<img></img>' + self.human_prompt + questions + choices + self.prompt + self.assistant_prompt  # noqa
        image_position = prompt.rfind('<img>') + 5

        return image, prompt, data_sample, image_position