File size: 8,463 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""MDL Retriever."""

from typing import List, Optional

import numpy as np
import torch
import tqdm
from transformers import AutoModelForCausalLM

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever.icl_topk_retriever import TopkRetriever
from opencompass.openicl.utils.logging import get_logger
from opencompass.registry import ICL_PROMPT_TEMPLATES, ICL_RETRIEVERS

logger = get_logger(__name__)


@ICL_RETRIEVERS.register_module()
class MDLRetriever(TopkRetriever):
    """MDL Retriever, subclass of `TopkRetriever`. MDL is a abbreviation of
    Minimum Description Length, specially designed for ppl evaluation. You may
    refer to the paper for more details: https://arxiv.org/pdf/2212.10375.pdf.

    Args:
        dataset (`BaseDataset`): Any BaseDataset instances.
            Attributes of ``reader``, ``train`` and ``test`` will be used.
        ice_separator (`Optional[str]`): The separator between each in-context
            example template when origin `PromptTemplate` is provided. Defaults
            to '\n'.
        ice_eos_token (`Optional[str]`): The end of sentence token for
            in-context example template when origin `PromptTemplate` is
            provided. Defaults to '\n'.
        ice_num (`Optional[int]`): The number of in-context example template
            when origin `PromptTemplate` is provided. Defaults to 1.
        sentence_transformers_model_name (`Optional[str]`): The name of the
            sentence transformers model. Defaults to 'all-mpnet-base-v2'.
        tokenizer_name (`Optional[str]`): The name of the tokenizer. Defaults
            to 'gpt2-xl'.
        batch_size (`Optional[int]`): The batch size for the dataloader.
            Defaults to 1.
        candidate_num (`Optional[int]`): The number of candidates to retrieve
            for each example. Defaults to 1.
        ce_model_name (`Optional[str]`): The name of the model for calculating
            MDL. Defaults to 'gpt2-xl'.
        select_time (`Optional[int]`): The number of times to select MDL.
            Defaults to 5.
        ice_template (`Optional[PromptTemplate]`): The template for in-context
            example. Defaults to None.
        prompt_template (`Optional[PromptTemplate]`): The template for prompt.
            Defaults to None.
        labels (`Optional[List]`): The labels for calculating MDL. Defaults to
            None.
        seed (`Optional[int]`): The seed for random. Defaults to 1.
    """
    metric_model = None

    def __init__(self,
                 dataset,
                 ice_separator: Optional[str] = '\n',
                 ice_eos_token: Optional[str] = '\n',
                 ice_num: Optional[int] = 1,
                 sentence_transformers_model_name: Optional[
                     str] = 'all-mpnet-base-v2',
                 tokenizer_name: Optional[str] = 'gpt2-xl',
                 batch_size: Optional[int] = 1,
                 candidate_num: Optional[int] = 1,
                 ce_model_name: Optional[str] = 'gpt2-xl',
                 select_time: Optional[int] = 5,
                 ice_template: Optional[PromptTemplate] = None,
                 prompt_template: Optional[PromptTemplate] = None,
                 labels: Optional[List] = None,
                 seed: Optional[int] = 1) -> None:
        super().__init__(dataset, ice_separator, ice_eos_token, ice_num,
                         sentence_transformers_model_name, tokenizer_name,
                         batch_size)
        self.ce_model_name = ce_model_name
        self.candidate_num = candidate_num
        self.select_time = select_time
        self.ice_template = ICL_PROMPT_TEMPLATES.build(ice_template)
        if prompt_template is not None:
            self.prompt_template = ICL_PROMPT_TEMPLATES.build(prompt_template)
        else:
            self.prompt_template = None
        self.labels = labels
        self.seed = seed

    def topk_search(self):
        np.random.seed(self.seed)
        res_list = self.forward(self.dataloader)
        rtr_idx_list = [[] for _ in range(len(res_list))]

        logger.info('Retrieving data for test set...')
        for entry in tqdm.tqdm(res_list, disable=not self.is_main_process):
            idx = entry['metadata']['id']
            embed = np.expand_dims(entry['embed'], axis=0)
            near_ids = self.index.search(
                embed, min(self.candidate_num,
                           len(self.index_ds)))[1][0].tolist()
            candidates = []
            mdl_scores = []
            for j in range(self.select_time):
                if j == 0:
                    rand_idx_list = near_ids[:self.ice_num]
                else:
                    rand_idx_list = np.random.choice(near_ids,
                                                     self.ice_num,
                                                     replace=False)
                    rand_idx_list = [int(i) for i in rand_idx_list]
                candidates.append(rand_idx_list)

                ice = self.generate_ice(rand_idx_list,
                                        ice_template=self.ice_template)
                ice = str(ice)
                mask_length = len(
                    self.tokenizer(ice + self.ice_eos_token,
                                   verbose=False)['input_ids'])
                if self.labels is None:
                    labels = self.get_labels(self.ice_template,
                                             self.prompt_template)
                else:
                    labels = self.labels
                prompt_list = []
                for label in labels:
                    prompt = self.generate_label_prompt(
                        idx, ice, label, self.ice_template,
                        self.prompt_template)
                    prompt = str(prompt)
                    prompt_list.append(prompt)
                loss_list = self.cal_ce(prompt_list, mask_length=mask_length)
                probs = np.exp(-np.array(loss_list))
                normalized_probs = probs / probs.sum(0, keepdims=True)
                neg_entropy = -entropy(normalized_probs, label_dim=0)
                mdl_scores.append(neg_entropy)

            rtr_idx_list[idx] = candidates[mdl_scores.index(max(mdl_scores))]
            rtr_idx_list[idx] = [int(i) for i in rtr_idx_list[idx]]

        return rtr_idx_list

    def retrieve(self):
        """Retrieve the in-context example index for each test example."""
        return self.topk_search()

    @torch.no_grad()
    def cal_ce(self, input_texts: List[str], mask_length=None):
        if self.metric_model is None:
            logger.info(
                f'Load model {self.ce_model_name} for calculating MDL...')
            self.metric_model = AutoModelForCausalLM.from_pretrained(
                self.ce_model_name)
            self.metric_model.to(self.device)
        inputs = self.tokenizer(input_texts,
                                padding=True,
                                return_tensors='pt',
                                truncation=True)
        inputs = {k: v.to(self.device) for k, v in inputs.items()}
        outputs = self.metric_model(**inputs)

        shift_logits = outputs.logits[..., :-1, :].contiguous()
        shift_labels = inputs['input_ids'][..., 1:].contiguous()

        loss_fct = torch.nn.CrossEntropyLoss(
            reduction='none', ignore_index=self.tokenizer.pad_token_id)
        shift_logits = shift_logits.view(-1, shift_logits.size(-1))
        loss = loss_fct(shift_logits,
                        shift_labels.view(-1)).view(shift_labels.size())
        if mask_length is not None:
            mask = torch.cat([
                torch.zeros([loss.shape[0], mask_length], dtype=torch.float),
                torch.ones([loss.shape[0], loss.shape[-1] - mask_length],
                           dtype=torch.float)
            ], -1)
            mask = mask.to(self.device)
            loss = torch.mul(mask, loss)

        lens = (inputs['input_ids'] !=
                self.tokenizer.pad_token_id).sum(-1).cpu().numpy()
        if mask_length is not None:
            lens -= mask_length
        ce_loss = loss.sum(-1).cpu().detach().numpy() / lens
        return ce_loss


def entropy(probs: np.array, label_dim: int = 0, mask=None):
    if mask is None:
        return -(probs * np.log(probs)).sum(label_dim)
    return -(mask * probs * np.log(probs)).sum(label_dim)