File size: 8,905 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import logging
import os
import os.path as osp
import subprocess
import sys
import time
import traceback
from multiprocessing import Manager, Pool
from multiprocessing.managers import SyncManager
from typing import Any, Dict, List, Tuple
import mmengine
from mmengine.config import ConfigDict
from tqdm import tqdm
from opencompass.registry import RUNNERS, TASKS
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.base import BaseTask
from opencompass.utils import (build_dataset_from_cfg, build_model_from_cfg,
get_infer_output_path, get_logger,
task_abbr_from_cfg)
from .base import BaseRunner
def monkey_run(self, tokens: SyncManager.Semaphore):
"""Hack for infer task run, add tokens for multiprocess."""
self.logger.info(f'Task {task_abbr_from_cfg(self.cfg)}')
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
self.max_out_len = model_cfg.get('max_out_len', None)
self.min_out_len = model_cfg.get('min_out_len', None)
self.batch_size = model_cfg.get('batch_size', None)
self.model = build_model_from_cfg(model_cfg)
# add global tokens for concurrents
assert self.model.is_api, 'Only API model is supported.'
self.model.tokens = tokens
for dataset_cfg in dataset_cfgs:
self.model_cfg = model_cfg
self.dataset_cfg = dataset_cfg
self.infer_cfg = self.dataset_cfg['infer_cfg']
self.dataset = build_dataset_from_cfg(self.dataset_cfg)
self.sub_cfg = {
'models': [self.model_cfg],
'datasets': [[self.dataset_cfg]],
}
out_path = get_infer_output_path(
self.model_cfg, self.dataset_cfg,
osp.join(self.work_dir, 'predictions'))
if osp.exists(out_path):
continue
self._inference()
old_stdout = sys.stdout
old_stderr = sys.stderr
def redirect_std_to_file(filename: str):
"""Redirect stdout and stderr, also change logger stream handler."""
f = open(filename, 'w', encoding='utf-8')
sys.stdout = f
sys.stderr = f
# change logger stream handler as well
logger = get_logger()
for h in logger.handlers:
if isinstance(h, logging.StreamHandler):
h.stream = sys.stdout
# special treat for icl_gen_inferencer logger
gen_logger = logging.getLogger(
'opencompass.openicl.icl_inferencer.icl_gen_inferencer')
for h in gen_logger.handlers:
if isinstance(h, logging.StreamHandler):
h.stream = sys.stdout
def reset_std():
"""Reset stdout and stderr, also change logger stream handler."""
sys.stdout.close()
sys.stdout = old_stdout
sys.stderr = old_stderr
# change logger stream handler as well
logger = get_logger()
for h in logger.handlers:
if isinstance(h, logging.StreamHandler):
h.stream = sys.stdout
# special treat for icl_gen_inferencer logger
gen_logger = logging.getLogger(
'opencompass.openicl.icl_inferencer.icl_gen_inferencer')
for h in gen_logger.handlers:
if isinstance(h, logging.StreamHandler):
h.stream = sys.stdout
def launch(task: BaseTask, tokens: SyncManager.Semaphore):
"""Launch a single task.
Args:
task (BaseTask): Task to launch.
tokens (SyncManager.Semaphore): Multiprocessing semaphore
for every subprocess to follow.
Returns:
tuple[str, int]: Task name and exit code.
"""
task_name = task.name
returncode = 0
logger = get_logger()
try:
# get log file and redirect stdout and stderr
out_path = task.get_log_path(file_extension='out')
mmengine.mkdir_or_exist(osp.split(out_path)[0])
redirect_std_to_file(out_path)
# start infer with monkey_run
start_time = time.time()
inferencer = OpenICLInferTask(task.cfg)
origin_run = inferencer.run
inferencer.run = monkey_run
inferencer.run(inferencer, tokens)
inferencer.run = origin_run
end_time = time.time()
logger.info(f'time elapsed: {end_time - start_time:.2f}s')
except Exception:
# print trace back in target file
traceback.print_exc()
# reset stdout and stderr
reset_std()
logger.warning(f'task {task_name} fail, see\n{out_path}')
returncode = 1
else:
# reset stdout and stderr
reset_std()
return task_name, returncode
def submit(task, type, tokens):
"""Helper for launch the task."""
task = TASKS.build(dict(cfg=task, type=type))
tqdm.write(f'Launch {task.name} on CPU ')
res = launch(task, tokens)
return res
@RUNNERS.register_module()
class LocalAPIRunner(BaseRunner):
"""Local API Runner. Start tasks by local python.
The query per second cannot guarantee the number of concurrents, therefore
Supported concurrent users with multiple tasks. Applied for those apis
which has a restriction on concurrent numbers.
Args:
task (ConfigDict): Task type config.
concurrent_users (int): Max number of concurrent workers to request
the resources.
max_num_workers (int): Max number of workers to run in parallel.
Defaults to 16.
debug (bool): Whether to run in debug mode.
lark_bot_url (str): Lark bot url.
"""
def __init__(self,
task: ConfigDict,
concurrent_users: int,
max_num_workers: int = 16,
debug: bool = False,
lark_bot_url: str = None):
super().__init__(task=task, debug=debug, lark_bot_url=lark_bot_url)
self.max_num_workers = max_num_workers
self.concurrent_users = concurrent_users
assert task['type'] in [
'OpenICLInferTask',
'opencompass.tasks.OpenICLInferTask',
], 'Only supported for api infer task.'
def launch(self, tasks: List[Dict[str, Any]]) -> List[Tuple[str, int]]:
"""Launch multiple tasks.
Args:
tasks (list[dict]): A list of task configs, usually generated by
Partitioner.
Returns:
list[tuple[str, int]]: A list of (task name, exit code).
"""
status = []
if self.debug:
# fall back to LocalRunner debug mode
for task in tasks:
task = TASKS.build(dict(cfg=task, type=self.task_cfg['type']))
task_name = task.name
# get cmd
mmengine.mkdir_or_exist('tmp/')
param_file = f'tmp/{os.getpid()}_params.py'
try:
task.cfg.dump(param_file)
cmd = task.get_command(cfg_path=param_file,
template='{task_cmd}')
# run in subprocess if starts with torchrun etc.
if cmd.startswith('python'):
task.run()
else:
subprocess.run(cmd, shell=True, text=True)
finally:
os.remove(param_file)
status.append((task_name, 0))
else:
pbar = tqdm(total=len(tasks))
get_logger().info('All the logs and processes for each task'
' should be checked in each infer/.out file.')
with Manager() as manager:
tokens = manager.Semaphore(self.concurrent_users)
# pbar update has visualization issue when direct
# update pbar in callback, need an extra counter
pbar_counter = manager.Value('i', 0)
status = []
def update(args):
"""Update pbar counter when callback."""
pbar_counter.value += 1
status.append(args)
with Pool(processes=self.max_num_workers) as pool:
for task in tasks:
pool.apply_async(submit,
(task, self.task_cfg['type'], tokens),
callback=update)
pool.close()
# update progress bar
while True:
cur_count = pbar_counter.value
if cur_count > pbar.n:
pbar.update(cur_count - pbar.n)
# break when all the task finished
if cur_count >= pbar.total:
pbar.close()
break
# sleep to lower the usage
time.sleep(1)
pool.join()
return status
|